
Syllabus 2016 -2019
Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

(For the Candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

SUBJECT: PROGRAMMING IN PYTHON

SEMESTER: V

SUB.CODE:16CAU501B CLASS: III BCA

SCOPE

This course is an introduction to the Python programming language. The course cover data types,

control flow, object-oriented programming, and graphical user interface-driven applications.

OBJECTIVES

The educate students how to:

• use Python interactively

• use Python types, expressions, and None • use string literals and string type

• use Python statements (if...elif..else, for, pass, continue, . . .)

• utilize high-level data types such as lists and dictionaries.

UNIT-I

Planning the Computer Program: Concept of problem solving-Problem definition- Program design-

Debugging-Types of errors in programming-Documentation.

UNIT-II

Techniques of Problem Solving: Flowcharting-decision table-algorithms-Structured programming

concepts-Programming methodologies: top-down and bottom-up Programming.

UNIT-III

Overview of Programming: Structure of a Python Program-Elements of Python.

UNIT-IV

Introduction to Python: Python Interpreter-Using Python as calculator-Python shell- Indentation.

Atoms-Identifiers and keywords-Literals-Strings-Operators(Arithmetic operator, Relational

Syllabus 2016 -2019
Batch

operator, Logical or Boolean operator, Assignment, Operator, Ternary operator, Bit wise operator,

Increment or Decrement operator).

UNIT-V

Creating Python Programs: Input and Output Statements-Control statements(Branching, Looping,

Conditional Statement, Exit function, Difference between break, continue and pass.). Defining

Functions-Default arguments.

SUGGESTED READINGS

1. Allen Downey, Jeffrey Elkner, Chris Meyers, (2012). How to think like a computer scientist

: learning with Python , Freely available online.

2. Budd,T.,(2011).Exploring Python, (1
st
ed.) TMH

WEBSITES

1. http://docs.python.org/3/tutorial/index.html.

2. http://interactivepython.org/courselib/static/pythonds.

3. http://www.ibiblio.org/g2swap/byteofpython/read/.

Lesson Plan 2016 -2019
Batch

Prepared by Ms.U.PRATHIBHA, Dept of CS,CA & IT ,KAHE 1/4

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

(For the Candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

SUBJECT: PROGRAMMING IN PYTHON

SEMESTER: V

SUB.CODE:16CAU501B CLASS: III BCA

LECTURE PLAN

DEPARTMENT OF COMPUTER APPLICATIONS

S.No Lecture

Duration

Period

Topics to be Covered Support Material/Page Nos

 UNIT-I

1 1 Planning the Computer Program –

Concept of problem solving

T1: 1,W3

2 1 Problem Definition T1:1 , W3

3 1 Program Design T1: 3-4, W1

4 1 Debugging T1: 4, T1: 219 – 228

5 1 Types of errors in Programming T1: 4-6

6 1 Documentation T1: 241 – 247, W4 ,W2

7 1 Recapitulation and Discussion of

important Questions

 Total No of Hours Planned For Unit 1=7

 UNIT-II

1 1 Techniques of Problem Solving W6

2 1 Decision table W5

3 1 Algorithms T1:142-143,W9

4 1 Structured Programming Concepts T1:6-8,W7

5 1 Programming Methodologies: Top

down and Bottom Up Programming

W8

Lesson Plan 2016 -2019
Batch

Prepared by Ms.U.PRATHIBHA, Dept of CS,CA & IT ,KAHE 2/4

6 1 Recapitulation and Discussion of

important Questions

Total No of Hours Planned For Unit II=6

 UNIT-III

1 1 Overview of Programming T1:1-3, W10

2 1 Overview of Programming – History

of python

T1: 4-6, W10

3 1 Structure of a python program T1:8,T2: 1-2, W10

4 1 Elements of python W11

5 1 Recapitulation and Discussion of

important Questions

 Total No of Hours Planned For Unit III=5

 UNIT-IV

1 1 Introduction to python – Python

Interpreter

R1: 1- 5

2 1 Using Python as a Calculator W1

3 1 Python Shell – Indentation R1:5-8 , W1

4 1 Atoms – Identifiers and Keywords T1:11-14,W12

5 1 Literals , Strings T1:71-78 , T2: 65 – 66, W1

6 1 Operators – Arithmetic , Relational,

Logical or Boolean Operator

T1 : 16 – 17, T1: 35 - 37

7 1 Operators –Assignment , Ternary,

Bitwise Operator, Increment or

Decrement Operator

T2: 13 – 14, T2: 3 – 4

8 1 Recapitulation and Discussion of

important Questions

 Total No of Hours Planned For Unit IV=8

 UNIT-V

1 1 Creating Python Programs : Input

and Output Statements

T2 : 22, W1

2 1 Control Statement – Branching and

Looping

T2: 33- 38 , W1,W10

3 1 Control Statement – Conditional and

Exit

T2: 33- 38 , W1,W10

4 1 Difference between break, continue

and pass

T2: 38 – 39, W1

5 1 Defining Functions T1: 21 – 28, T2: 46 -52

Lesson Plan 2016 -2019
Batch

Prepared by Ms.U.PRATHIBHA, Dept of CS,CA & IT ,KAHE 3/4

6 1 Default Arguments T1: 28 – 30 , T2: 59 – 60 ,W10

7 1 Recapitulation and discussion of

Important Questions

8 1 Discussion of previous year ESE

Question Paper

9 1 Discussion of previous year ESE

Question Paper

10 1 Discussion of previous year ESE

Question Paper

 Total No of Hours Planned for unit V=10

Total

Planned

Hours

36

SUGGESTED READINGS

T1: Allen Downey, Jeffrey Elkner, Chris Meyers, (2012). How to think like a computer scientist :

learning with Python , Freely available online.

 T2: Budd,T.,(2011).Exploring Python, (1
st
ed.) TMH

 R1:Richard L.Halterman , (2011), “Learning to Program with Python”

WEBSITES

W1: http://docs.python.org/3/tutorial/index.html

W2: http://interactivepython.org/courselib/static/pythonds

W3: http://www.ibiblio.org/g2swap/byteofpython/read/

W4: https://devguide.python.org/documenting

W5:https://rosettacode.org/wiki/Decision_tables

W6: www.codeavengers.com/notes/planning/flowch

W7: clas.mq.edu.au/speech/synthesis/basic-programming/index.html

W8: www.tutorialspoint.com/programming-methodologies

http://docs.python.org/3/tutorial/index.html
http://interactivepython.org/courselib/static/pythonds
http://www.tutorialspoint.com/programming-methodologies

Lesson Plan 2016 -2019
Batch

Prepared by Ms.U.PRATHIBHA, Dept of CS,CA & IT ,KAHE 4/4

W9: www.tutorialspoint.com/python/python-algorithm-design.htm

W10: www.tutorialspoint.com/python

W11: //pentagle.net/python/handbook/Elelments.html

W12: www.journaldev.com/13976/python-keywords

http://www.tutorialspoint.com/python/python-algorithm-design.htm
http://www.tutorialspoint.com/
http://www.journaldev.com/13976/python-keywords

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 1/20

UNIT – I

SYLLABUS

Planning the Computer Program: Concept of problem solving-Problem definition- Program

design-Debugging-Types of errors in programming-Documentation.

PLANNING THE COMPUTER PROGRAM

CONCEPT OF PROBLEM SOLVING

 Problem solving means the ability to formulate problems, think creatively about

solutions, and express a solution clearly and accurately. As it turns out, the process of

learning to program is an excellent opportunity to practice problem solving skills.

PROBLEM DEFINITION

 The problem is 'I want a program which creates a backup of all my important

files'.

 Although, this is a simple problem, there is not enough information for us to get

started with the solution. A little more analysis is required. For example, how

do we specify which files are to be backed up? Where is the backup stored?

How are they stored in the backup?

 After analyzing the problem properly, we design our program. We make a list

of things about how our program should work. In this case, I have created the

following list on how I want it to work. If you do the design, you may not come

up with the same kind of problem - every person has their own way of doing

things, this is ok.

1. The files and directories to be backed up are specified in a list.

2. The backup must be stored in a main backup directory.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 2/20

3. The files are backed up into a zip file.

4. The name of the zip archive is the current date and time.

5. We use the standard zip command available by default in any standard

Linux/Unix distribution. Windows users can use the Info-Zip program.

Note that you can use any archiving command you want as long as it has

a command line interface so that we can pass arguments to it from our

script.

THE SOLUTION

 As the design of our program is now stable, we can write the code which is

an implementation of our solution.

FIRST VERSION

EXAMPLE: 10.1. A BACKUP SCRIPT - THE FIRST VERSION

#!/usr/bin/python

Filename: backup_ver1.py

import os

import time

1. The files and directories to be backed up are specified in a

list.

source = ['/home/swaroop/byte', '/home/swaroop/bin']

If you are using Windows, use source = [r'C:\Documents',

r'D:\Work'] or something like that

2. The backup must be stored in a main backup directory

target_dir = '/mnt/e/backup/' # Remember to change this to what

you will be using

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 3/20

3. The files are backed up into a zip file.

4. The name of the zip archive is the current date and time

target = target_dir + time.strftime('%Y%m%d%H%M%S') + '.zip'

5. We use the zip command (in Unix/Linux) to put the files in a

zip archive

zip_command = "zip -qr '%s' %s" % (target, ' '.join(source))

Run the backup

if os.system(zip_command) == 0:

 print 'Successful backup to', target

else:

 print 'Backup FAILED'

OUTPUT

$ python backup_ver1.py

Successful backup to /mnt/e/backup/20041208073244.zip

 Now, we are in the testing phase where we test that our program works

properly. If it doesn't behave as expected, then we have to debug our program

i.e. remove the bugs (errors) from the program.

How It Works

 You will notice how we have converted our design into code in a step-by-step

manner.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 4/20

 We make use of the os and time modules and so we import them. Then, we

specify the files and directories to be backed up in the source list. The target

directory is where store all the backup files and this is specified in

the target_dir variable. The name of the zip archive that we are going to create

is the current date and time which we fetch using the time.strftime() function. It

will also have the .zipextension and will be stored in the target_dir directory.

 The time.strftime() function takes a specification such as the one we have used

in the above program. The %Y specification will be replaced by the year

without the cetury. The %m specification will be replaced by the month as a

decimal number between 01 and 12 and so on. The complete list of such

specifications can be found in the [Python Reference Manual] that comes with

your Python distribution. Notice that this is similar to (but not same as) the

specification used in print statement (using the % followed by tuple).

 We create the name of the target zip file using the addition operator

which concatenates the strings i.e. it joins the two strings together and returns a

new one. Then, we create a string zip_command which contains the command

that we are going to execute. You can check if this command works by running

it on the shell (Linux terminal or DOS prompt).

 The zip command that we are using has some options and parameters passed.

The -q option is used to indicate that the zip command should work quietly.

The -r option specifies that the zip command should work recursively for

directories i.e. it should include subdirectories and files within the

subdirectories as well. The two options are combined and specified in a shorter

way as -qr. The options are followed by the name of the zip archive to create

followed by the list of files and directories to backup. We convert

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 5/20

the source list into a string using the join method of strings which we have

already seen how to use.

 Then, we finally run the command using the os.system function which runs the

command as if it was run from the system i.e. in the shell - it returns 0 if the

command was successfully, else it returns an error number.

 Depending on the outcome of the command, we print the appropriate message

that the backup has failed or succeeded and that's it, we have created a script to

take a backup of our important files!

Note to Windows Users

You can set the source list and target directory to any file and directory names but

you have to be a little careful in Windows. The problem is that Windows uses the

backslash (\) as the directory separator character but Python uses backslashes to

represent escape sequences!

So, you have to represent a backslash itself using an escape sequence or you have to

use raw strings. For example, use 'C:\\Documents' or r'C:\Documents' but

do not use'C:\Documents' - you are using an unknown escape sequence \D !

 Now that we have a working backup script, we can use it whenever we want to

take a backup of the files. Linux/Unix users are advised to use the executable

method as discussed earlier so that they can run the backup script anytime

anywhere. This is called the operation phase or the deployment phase of the

software.

 The above program works properly, but (usually) first programs do not work

exactly as you expect. For example, there might be problems if you have not

designed the program properly or if you have made a mistake in typing the

https://www.ibiblio.org/g2swap/byteofpython/read/executable-python-programs.html
https://www.ibiblio.org/g2swap/byteofpython/read/executable-python-programs.html
https://www.ibiblio.org/g2swap/byteofpython/read/executable-python-programs.html

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 6/20

code, etc. Appropriately, you will have to go back to the design phase or you

will have to debug your program.

DEBUGGING

 What is debugging?

 Programming is a complex process, and because it is done by human beings, it

often leads to errors. For whimsical reasons, programming errors are called bugs

and the process of tracking them down and correcting them is called debugging.

Three kinds of errors can occur in a program: syntax errors, runtime errors, and

semantic errors. It is useful to distinguish between them in order to track them

down more quickly.

 Syntax errors: Python can only execute a program if the program is

syntactically correct; otherwise, the process fails and returns an error

message. Syntax refers to the structure of a program and the rules about

that structure. For example, in English, a sentence must begin with a capital

letter and end with a period. This sentence contains a syntax error. So does

this one for most readers, a few syntax errors are not a significant problem,

which is why we can read the poetry of e. e. cummings without spewing

error messages. Python is not so forgiving. If there is a single syntax error

anywhere in your program, Python will print an error message and quit,

and you will not be able to run your program. During the first few weeks of

your programming career, you will probably spend a lot of time tracking

down syntax errors. As you gain experience, though, you will make fewer

errors and find them faster.

 Runtime errors: The second type of error is a runtime error, so called

because the error does not appear until you run the program. These errors

are also called exceptions because they usually indicate that something

exceptional (and bad) has happened. Runtime errors are rare in the simple

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 7/20

programs you will see in the first few chapters, so it might be a while

before you encounter one.

 Semantic errors: The third type of error is the semantic error. If there is a

semantic error in your program, it will run successfully, in the sense that

the computer will not generate any error messages, but it will not do the

right thing. It will do something else. Specifically, it will do what you told

it to do. The problem is that the program you wrote is not the program you

wanted to write. The meaning of the program (its semantics) is wrong.

Identifying semantic errors can be tricky because it requires you to work

backward by looking at the output of the program and trying to figure out

what it is doing.

 Experimental debugging: One of the most important skills you will

acquire is debugging. Although it can be frustrating, debugging is one of

the most intellectually rich, challenging, and interesting parts of

programming. In some ways, debugging is like detective work. You are

confronted with clues, and you have to infer the processes and events that

led to the results you see. Debugging is also like an experimental science.

Once you have an idea what is going wrong, you modify your program and

try again. If your hypothesis was correct, then you can predict the result of

the modification, and you take a step closer to a working program. If your

hypothesis was wrong, you have to come up with a new one. As Sherlock

Holmes pointed out, “When you have eliminated the impossible, whatever

remains, however improbable, must be the truth.” (A. Conan Doyle, The

Sign of Four) For some people, programming and debugging are the same

thing. That is, programming is the process of gradually debugging a

program until it does what you want. The idea is that you should start with

a program that does something and make small modifications, debugging

them as you go, so that you always have a working program.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 8/20

TYPES OF ERRORS IN PROGRAMMING

 Different kinds of errors can occur in a program, and it is useful to distinguish

among them in order to track them down more quickly:

• Syntax errors are produced by Python when it is translating the source code into byte code.

They usually indicate that there is something wrong with the syntax of the program. Example:

Omitting the colon at the end of a def statement yields the somewhat redundant message

SyntaxError: invalid syntax.

 • Runtime errors are produced by the runtime system if something goes wrong while the

program is running. Most runtime error messages include information about where the error

occurred and what functions were executing. Example: An infinite recursion eventually causes a

runtime error of “maximum recursion depth exceeded.”

• Semantic errors are problems with a program that compiles and runs but doesn’t do the right

thing. Example: An expression may not be evaluated in the order you expect, yielding an

unexpected result. The first step in debugging is to figure out which kind of error you are dealing

with. Although the following sections are organized by error type, some techniques are

applicable in more than one situation.

1. Syntax errors

 Syntax errors are usually easy to fix once you figure out what they are. Unfortunately, the

error messages are often not helpful. The most common 220 Debugging messages are

SyntaxError: invalid syntax and SyntaxError: invalid token, neither of which is very

informative.

 On the other hand, the message does tell you where in the program the problem occurred.

Actually, it tells you where Python noticed a problem, which is not necessarily where the

error is. Sometimes the error is prior to the location of the error message, often on the

preceding line.

 If you are building the program incrementally, you should have a good idea about where

the error is. It will be in the last line you added.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 9/20

 If you are copying code from a book, start by comparing your code to the book’s code

very carefully. Check every character. At the same time, remember that the book might

be wrong, so if you see something that looks like a syntax error, it might be.

 Here are some ways to avoid the most common syntax errors:

1. Make sure you are not using a Python keyword for a variable name.

2. Check that you have a colon at the end of the header of every compound statement,

including for, while, if, and def statements.

3. Check that indentation is consistent. You may indent with either spaces or tabs but it’s

best not to mix them. Each level should be nested the same amount.

4. Make sure that any strings in the code have matching quotation marks.

5. If you have multiline strings with triple quotes (single or double), make sure you have

terminated the string properly. An unterminated string may cause an invalid token error at

the end of your program, or it may treat the following part of the program as a string until

it comes to the next string. In the second case, it might not produce an error message at

all!

6. An unclosed bracket—(, {, or [—makes Python continue with the next line as part of

the current statement. Generally, an error occurs almost immediately in the next line.

7. Check for the classic = instead of == inside a conditional. If nothing works, move on to

the next section...

1.1 I can’t get my program to run no matter what I do.

 If the compiler says there is an error and you don’t see it, that might be because you and the

compiler are not looking at the same code. Check your programming environment to make sure

that the program you are editing is the one Python is trying to run. If you are not sure, try putting

an obvious and deliberate syntax error at the beginning of the program. Now run (or import) it

again. If the compiler doesn’t find the new error, there is probably something wrong with the

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 10/20

way your environment is set up. If this happens, one approach is to start again with a new

program like “Hello, World!,” and make sure you can get a known program to run. Then

gradually add the pieces of the new program to the working one.

2. Runtime errors

 Once your program is syntactically correct, Python can import it and at least start running

it. What could possibly go wrong?

2.1 My program does absolutely nothing.

 This problem is most common when your file consists of functions and classes but does

not actually invoke anything to start execution. This may be intentional if you only plan

to import this module to supply classes and functions. If it is not intentional, make sure

that you are invoking a function to start execution, or execute one from the interactive

prompt. Also see the “Flow of Execution” section below.

2.2 My program hangs.

 If a program stops and seems to be doing nothing, we say it is “hanging.” Often that

means that it is caught in an infinite loop or an infinite recursion.

• If there is a particular loop that you suspect is the problem, add a print statement

immediately before the loop that says “entering the loop” and another immediately after

that says “exiting the loop.”

 Run the program. If you get the first message and not the second, you’ve got an infinite

loop. Go to the “Infinite Loop” section below.

• Most of the time, an infinite recursion will cause the program to run for a while and

then produce a “RuntimeError: Maximum recursion depth exceeded” error. If that

happens, go to the “Infinite Recursion” section below.

 If you are not getting this error but you suspect there is a problem with a recursive

method or function, you can still use the techniques in the “Infinite Recursion” section.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 11/20

• If neither of those steps works, start testing other loops and other recursive functions and

methods.

• If that doesn’t work, then it is possible that you don’t understand the flow of execution in

your program. Go to the “Flow of Execution” section below.

Infinite Loop

 If you think you have an infinite loop and you think you know what loop is causing the

problem, add a print statement at the end of the loop that prints the values of the variables

in the condition and the value of the condition.

For example:

while x > 0 and y < 0 :

do something to x

do something to y

print "x: ", x

 print "y: ", y

print "condition: ", (x > 0 and y < 0)

 Now when you run the program, you will see three lines of output for each time through

the loop. The last time through the loop, the condition should be false. If the loop keeps

going, you will be able to see the values of x and y, and you might figure out why they

are not being updated correctly.

Infinite Recursion

 Most of the time, an infinite recursion will cause the program to run for a while and then

produce a Maximum recursion depth exceeded error.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 12/20

 If you suspect that a function or method is causing an infinite recursion, start by checking

to make sure that there is a base case. In other words, there should be some condition that

will cause the function or method to return without making a recursive invocation. If not,

then you need to rethink the algorithm and identify a base case.

 If there is a base case but the program doesn’t seem to be reaching it, add a print

statement at the beginning of the function or method that prints the parameters. Now

when you run the program, you will see a few lines of output every time the function or

method is invoked, and you will see the parameters. If the parameters are not moving

toward the base case, you will get some ideas about why not.

Flow of Execution

 If you are not sure how the flow of execution is moving through your program, add print

statements to the beginning of each function with a message like “entering function foo,”

where foo is the name of the function.

 Now when you run the program, it will print a trace of each function as it is invoked.

2.3 When I run the program I get an exception.

 If something goes wrong during runtime, Python prints a message that includes the name

of the exception, the line of the program where the problem occurred, and a traceback.

 The traceback identifies the function that is currently running, and then the function that

invoked it, and then the function that invoked that, and so on. In other words, it traces the

path of function invocations that got you to where you are. It also includes the line

number in your file where each of these calls occurs.

 The first step is to examine the place in the program where the error occurred and see if

you can figure out what happened. These are some of the most common runtime errors:

 Name Error: You are trying to use a variable that doesn’t exist in the current

environment. Remember that local variables are local. You cannot refer to them from

outside the function where they are defined.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 13/20

 Type Error: There are several possible causes: • You are trying to use a value

improperly. Example: indexing a string, list, or tuple with something other than an

integer.

• There is a mismatch between the items in a format string and the items passed for

conversion. This can happen if either the number of items does not match or an invalid

conversion is called for.

 • You are passing the wrong number of arguments to a function or method. For methods,

look at the method definition and check that the first parameter is self. Then look at the

method invocation; make sure you are invoking the method on an object with the right

type and providing the other arguments correctly.

 Key Error: You are trying to access an element of a dictionary using a key value that the

dictionary does not contain.

 Attribute Error: You are trying to access an attribute or method that does not exist.

 Index Error: The index you are using to access a list, string, or tuple is greater than its

length minus one. Immediately before the site of the error, add a print statement to

display the value of the index and the length of the array. Is the array the right size? Is the

index the right value?

2.4 I added so many print statements I get inundated with output.

 One of the problems with using print statements for debugging is that you can end up

buried in output. There are two ways to proceed: simplify the output or simplify the

program.

 To simplify the output, you can remove or comment out print statements that aren’t

helping, or combine them, or format the output so it is easier to understand.

 To simplify the program, there are several things you can do. First, scale down the

problem the program is working on. For example, if you are sorting an array, sort a small

array. If the program takes input from the user, give it the simplest input that causes the

problem.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 14/20

 Second, clean up the program. Remove dead code and reorganize the program to make it

as easy to read as possible. For example, if you suspect that the problem is in a deeply

nested part of the program, try rewriting that part with simpler structure. If you suspect a

large function, try splitting it into smaller functions and testing them separately.

 Often the process of finding the minimal test case leads you to the bug. If you find that a

program works in one situation but not in another, that gives you a clue about what is

going on.

 Similarly, rewriting a piece of code can help you find subtle bugs. If you make a change

that you think doesn’t affect the program, and it does, that can tip you off.

3. Semantic errors

 In some ways, semantic errors are the hardest to debug, because the compiler and the

runtime system provide no information about what is wrong. Only you know what the

program is supposed to do, and only you know that it isn’t doing it.

 The first step is to make a connection between the program text and the behavior you are

seeing. You need a hypothesis about what the program is actually doing. One of the

things that make that hard is that computers run so fast.

 You will often wish that you could slow the program down to human speed, and with

some debuggers you can. But the time it takes to insert a few well-placed print statements

is often short compared to setting up the debugger, inserting and removing breakpoints,

and “walking” the program to where the error is occurring.

3.1 My program doesn’t work.

 You should ask yourself these questions:

• Is there something the program was supposed to do but which doesn’t seem to be

happening? Find the section of the code that performs that function and make sure it is executing

when you think it should.

• Is something happening that shouldn’t? Find code in your program that performs that

function and see if it is executing when it shouldn’t.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 15/20

• Is a section of code producing an effect that is not what you expected? Make sure that

you understand the code in question, especially if it involves invocations to functions or methods

in other Python modules. Read the documentation for the functions you invoke. Try them out by

writing simple test cases and checking the results.

 In order to program, you need to have a mental model of how programs work. If you write

a program that doesn’t do what you expect, very often the problem is not in the program;

it’s in your mental model.

 The best way to correct your mental model is to break the program into its components

(usually the functions and methods) and test each component independently. Once you

find the discrepancy between your model and reality, you can solve the problem.

 Of course, you should be building and testing components as you develop the program. If

you encounter a problem, there should be only a small amount of new code that is not

known to be correct.

3.2 I’ve got a big hairy expression and it doesn’t do what I expect.

 Writing complex expressions is fine as long as they are readable, but they can be hard to

debug. It is often a good idea to break a complex expression into a series of assignments

to temporary variables.

For example:

 self.hands[i].addCard (self.hands[self.findNeighbor(i)].popCard())

This can be rewritten as:

neighbor = self.findNeighbor (i)

 pickedCard = self.hands[neighbor].popCard()

self.hands[i].addCard (pickedCard)

 The explicit version is easier to read because the variable names provide additional

documentation, and it is easier to debug because you can check the types of the

intermediate variables and display their values.

 Another problem that can occur with big expressions is that the order of evaluation may

not be what you expect. For example, if you are translating the expression x 2π into

Python, you might write:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 16/20

y = x / 2 * math.pi

 That is not correct because multiplication and division have the same precedence and are

evaluated from left to right. So this expression computes xπ/2.

 A good way to debug expressions is to add parentheses to make the order of evaluation

explicit:

 y = x / (2 * math.pi)

 Whenever you are not sure of the order of evaluation, use parentheses. Not only will the

program be correct (in the sense of doing what you intended), it will also be more readable

for other people who haven’t memorized the rules of precedence

3.3 I’ve got a function or method that doesn’t return what I expect.

 If you have a return statement with a complex expression, you don’t have a chance to print

the return value before returning. Again, you can use a temporary variable. For example,

instead of:

return self.hands[i].removeMatches()

 you could write:

count = self.hands[i].removeMatches()

 return count

 Now you have the opportunity to display the value of count before returning.

3.4 I’m really, really stuck and I need help.

 First, try getting away from the computer for a few minutes. Computers emit waves that

affect the brain, causing these effects:

 • Frustration and/or rage.

 • Superstitious beliefs (“the computer hates me”) and magical thinking (“the program only

works when I wear my hat backward”).

 • Random-walk programming (the attempt to program by writing every possible program

and choosing the one that does the right thing).

 If you find yourself suffering from any of these symptoms, get up and go for a walk.

When you are calm, think about the program. What is it doing? What are some possible

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 17/20

causes of that behavior? When was the last time you had a working program, and what

did you do next?

 Sometimes it just takes time to find a bug. We often find bugs when we are away from the

computer and let our minds wander. Some of the best places to find bugs are trains,

showers, and in bed, just before you fall asleep.

3.5 No, I really need help.

 It happens. Even the best programmers occasionally get stuck. Sometimes you work on a

program so long that you can’t see the error. A fresh pair of eyes is just the thing.

 Before you bring someone else in, make sure you have exhausted the techniques described

here. Your program should be as simple as possible, and you should be working on the

smallest input that causes the error. You should have print statements in the appropriate

places (and the output they produce should be comprehensible). You should understand

the problem well enough to describe it concisely.

 When you bring someone in to help, be sure to give them the information they need:

 • If there is an error message, what is it and what part of the program does it indicate?

 • What was the last thing you did before this error occurred? What were the last lines

of code that you wrote, or what is the new test case that fails?

 • What have you tried so far, and what have you learned?

 When you find the bug, take a second to think about what you could have done to find it

faster. Next time you see something similar, you will be able to find the bug more quickly.

 Remember, the goal is not just to make the program work. The goal is to learn how to

make the program work.

DOCUMENTATION

Installation and documentation

If you use Mac OS X or Linux, then Python should already be installed on your computer by

default. If not, you can download the latest version by visiting the Python home page, at

http://www.python.org where you will also find loads of documentation and other useful

information. Windows users can also download Python at this website. Don’t forget this website;

it is your first point of reference for all things Python.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 18/20

GNU Free Documentation License

Preamble

 The purpose of this License is to make a manual, textbook, or other written document

“free” in the sense of freedom: to assure everyone the effective freedom to copy and

redistribute it, with or without modifying it, either commercially or noncommercially.

Secondarily, this License preserves for the author and publisher a way to get credit for

their work, while not being considered responsible for modifications made by others.

Applicability and Definitions

This License applies to any manual or other work that contains a notice placed by the copyright

holder saying it can be distributed under the terms of this License

Verbatim Copying

 You may copy and distribute the Document in any medium, either commercially or

noncommercially, provided that this License, the copyright notices, and the license notice saying

this License applies to the Document are reproduced in all copies, and that you add no other

conditions whatsoever to those of this License.

Modifications

You may copy and distribute a Modified Version of the Document under the conditions of

Sections 2 and 3 above, provided that you release the Modified Version under precisely this

License, with the Modified Version filling the role of the Document, thus licensing distribution

and modification of the Modified Version to whoever possesses a copy of it.

Combining Documents

 You may combine the Document with other documents released under this License, under the

terms defined in Section 4 above for modified versions, provided that you include in the

combination all of the Invariant Sections of all of the original documents, unmodified, and list

them all as Invariant Sections of your combined work in its license notice.

Collections of Documents

You may make a collection consisting of the Document and other documents released under this

License, and replace the individual copies of this License in the various documents with a single

copy that is included in the collection, provided that you follow the rules of this License for

verbatim copying of each of the documents in all other respects

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 19/20

Aggregation with Independent Works

A compilation of the Document or its derivatives with other separate and independent documents

or works, in or on a volume of a storage or distribution medium, does not as a whole count as a

Modified Version of the Document, provided no compilation copyright is claimed for the

compilation. Such a compilation is called an “aggregate,” and this License does not apply to the

other self-contained works thus compiled with the Document, on account of their being thus

compiled, if they are not themselves derivative works of the Document.

Translation

Translation is considered a kind of modification, so you may distribute translations of the

Document under the terms of Section 4. Replacing Invariant Sections with translations requires

special permission from their copyright holders, but you may include translations of some or all

Invariant Sections in addition to the original versions of these Invariant Sections.

Termination

 You may not copy, modify, sublicense, or distribute the Document except as expressly provided

for under this License. Any other attempt to copy, modify, sublicense, or distribute the

Document is void, and will automatically terminate your rights under this License. However,

parties who have received copies, or rights, from you under this License will not have their

licenses terminated so long as such parties remain in full compliance.

Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU Free

Documentation License from time to time. Such new versions will be similar in spirit to the

present version, but may differ in detail to address new problems or concern

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - I BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 20/20

POSSIBLE QUESTIONS

UNIT – I

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. What is Debugging?

2. Define Problem

3. What is meant by Problem Solving?

4. List the Types of Errors

5. What is the process of Syntax error?

6. What is the process of Runtime error?

PART – C (6 MARKS)

1. Explain the Concept of Problem Solving

2. Explain the types of Errors in Programming

3. Explain the process of Syntax error with suitable examples

4. Discuss in detail about the Documentation

5. Explain the process of Semantic error with suitable examples

6. Discuss in detail about Debugging

7. Explain the process of Runtime error with suitable examples

8. Difference between the Syntax error and Semantic Error

9. Difference between the Syntax error and Run time Error

10. Explain about GNU Free Documentation License

Questions Opt1 Opt2 Opt3 Opt4 Key

Last step in process of problem solving is to

design a

solution

define a

problem

practicing the

solution organizing the data practicing the solution

Second step in problem solving process is to

design a

solution

define a

problem

practicing the

solution organizing the data design a solution

Thing to keep in mind while solving a problem

is input data output data stored data all of above all of above

First step in process of problem solving is to

design a

solution

define a

problem

practicing the

solution organizing the data define a problem

Error in a program is called bug debug virus noise bug

Error which occurs when program tried to read

from file without opening it is classified as

execution error

messages

 built in

messages

user-defined

messages half messages

execution error

messages

__________ is the process of formulating a

problem, finding a solution, and expressing the

solution

problem

solving: Recover Format Retrieve problem solving

___________ is a set of instructions that

specifies a computation Process Program Syntax Error Program

_______ is an error in a program that makes it

do something other than what the programmer

intended. Syntax error Semantic error Run time error Logical Error Semantic error

PART - A (Online Examination)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore – 641 021.

(For the Candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - I : (Objective Type Multiple choice Questions each Question carries one Mark)

 PROGRAMMING IN PYTHON [16CAU501B]

____________ is an error in a program that

makes it impossible to parse (and therefore

impossible to interpret). Syntax error Semantic error Run time error Logical Error Syntax error

____________ is an error that does not occur

until the program has started to execute but

that prevents the program from continuing. Syntax error Semantic error Run time error Logical Error Run time error

________ is an another name for Run time

error Syntax error Semantic error Exception Semantics Exception

Which translate a program written in a high-

level language into a lowlevel language all at

once, in preparation for later execution? Compile Interpret Script bug Compile

Which execute a program in a high-level

language by translating it one line at a time. Compile Interpret Script bug Interpret

________ is a program in a high-level

language before being compiled. executable source code object code program source code

________ is the output of the compiler after it

translates the program. Coding source code object code program object code

_________ is the structure of a program Syntax Source Semantics Algorithm Syntax

What is a property of a program that can run

on more than one kind of computer. executable source code Coding Portability Portability

_________ is another name for object code

that is ready to be executed. executable source code Coding program executable

___________ is the meaning of a program Syntax Source Semantics Algorithm Semantics

_________ is to examine a program and

analyze the syntactic structure. Syntax Source Semantics parse parse

________ is the process of finding and

removing any of the three kinds of

programming errors. bug debugging virus noise debugging

As the design of our program is now stable,

we can write the code which is an

____________ of our solution. problem implementation solving solution implementation

A single unit which is composed of small

group of bits is known as bit bug flag byte byte

BCD stands for _________________

Binary Coded

Decimal

Binary Coded

Digitals

Binary

Characters

Decimals

Binary Conducting

Decimals Binary Coded Decimal

Software mistakes during coding are known as errors failures bugs defects bugs

Which of the following is not a part of

Execution Flow during debugging? Step Over Step Into Step Up Step Out Step Up

What are the types of requirements ? Availability Reliability Usability

All of the

mentioned All of the mentioned

Any one of the languages that people speak

that evolved naturally. natural language formal language

assembly

language machine language natural language

Any one of the languages that people have

designed for specific purposes, such as

representing mathematical ideas or computer

programs; natural language formal language

assembly

language machine language formal language

A_______________ is a sequence of

instructions that specifies how to perform a

computation. task program problem debugging program

__________ Get data from the keyboard, a

file, or some other device. input output math conditional input

Display data on the screen or send data to a

file or other device. input output math conditional output

Perform basic mathematical operations like

addition and multiplication. input output math conditional math

: Check for certain conditions and execute the

appropriate sequence of statements input output math conditional conditional

Perform some action repeatedly, usually with

some variation input output repetition conditional repetition

The second type of error is a runtime error, so

called because the error does not appear until

you merge the

program

you concatenate

the program

you copy the

program

you run the

program you run the program

In semantic error, the computer will not

_______ any error messages generate sustain process perform generate

 __________ are formal languages that have

been designed to express computations. language

natural

language

Programming

languages machine language

Programming

languages

Natural languages are full of ___________,

which people deal with by using contextual

clues and other information redundancy ambiguity literalness process ambiguity

In order to make up for ambiguity and reduce

misunderstandings, natural languages employ

lots of ___________. redundancy ambiguity literalness process redundancy

Natural languages are full of idiom and

metaphor. redundancy ambiguity literalness process literalness

Hardware and software specifications are part

of

computing

requirements

statement

requirements

system

flowchart decision statement

computing

requirements

Distinct parts of documentation are called

technical

documentation

and

documentation

for user

technical

documentation

and planning

planning and

documentation

for user

planning and user

process

technical

documentation and

documentation for user

Program background, program functions and

the computing requirements are part of

operations

detail

predefined

programs decision box statement box operations detail

Set of diagrams and notes that accompany

program implementation are known as

program

execution

program

planning

program

documentation program existence

program

documentation

Program documentation is used by the programmers system analyst

modifying the

program all of above all of above

able which shows the results and the executed

instructions is called trace table sequence design

dimension

design

implementation

design trace table

All the steps of a program in the form of

printout is classified as arithmetic trace trace transfer trace trace routine trace

Error which results in performing the

unintended operations is classified as system error logical error

mismatched

error stop time error logical error

Program traces are produced while data is entered

deciding

arithmetic

operations

program is

running transferring control program is running

___________ is considered a kind of

modification, so you may distribute

translations of the Document under the terms

of Section 4 Termination Translation Aggregation Revision Translation

 You may not copy, modify, sublicense, or

distribute the Document except as expressly

provided for under this License. Termination Translation Aggregation Revision Termination

Name given by a programmer to any particular

data is classified as Identification Identifier exponent mantissa Identifier

To write a program function i.e. program for

the sum of four integers, the program

refinement first level includes calculate sum print the values

input four

numbers display the values input four numbers

Data which is used to test each feature of the

program and is carefully selected is classified

as program output program input test data test program test data

Defining data requirements such as input and

output is classified as

process

definition

function

definition print defintion writing purpose function definition

Method used in writing and designing of a

program is termed as

bottom up

method top

down method split method

binary states

method top down method

Two kinds of programs process high-level

languages into low-level languages: compilers and

translators

interpreters and

assemblers

interpreters

and compilers.

assemblers and

compilers.

interpreters and

compilers.

There are two ways to use the interpreter:

commandline

mode and script

mode

user mode and

script mode

commandline

mode and user

mode

commandline

mode and

translator mode

commandline mode

and script mode

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - II BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 1/16

UNIT – II

SYLLABUS

Techniques of Problem Solving: Flowcharting-decision table-algorithms-Structured

programming concepts-Programming methodologies: top-down and bottom-up Programming.

TECHNIQUES OF PROBLEM SOLVING

FLOWCHARTING

Introduction to planning

 It is important to be able to plan code with the use of flowcharts.

 Even though you can code without a plan, it is not good practice to start coding without a

guide to follow.

A good plan:

 creates a guide you can follow

 helps you plan efficient structure

 helps communicate to others what your code will do

 Poor planning can result in inefficient, unstructured code known as 'spaghetti code'.

FLOWCHARTS

 A standard way to plan code is with flowcharts.

 Specific parts of the flowchart represent specific parts of your code.

Symbol Name What it does in the code

Start/End

Ovals show a start point or end

point in the code

Connection

Arrows show connections

between different parts of the

code

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - II BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 2/16

revision

adding text to flowcharts

 There is no one right or wrong way to label flowcharts; you are presenting the structure

of your code in a way that humans can understand. Only add extra details to parts of the

flowchart when it is not obvious what they do.

Creating Flowcharts

There are many tools you can use to create flow charts.

Pseudo Code

 Pseudo code is an ordered version of your code written for human understanding rather

than machine understanding.

 There is no one set way to write pseudo code.

 Good pseudo code should:

 not be in a specific coding language

 draft the structure of your code

 be understandable to humans

e.g. pseudo code

if number <= 10 then

 ouput small number sentence

Process

Rectangles show processes

e.g. calculations

(most things the computer does

that does not involve an input,

output or decision)

Input/Output

Parallelograms show inputs and

outputs

(remember print is normally an

input)

Conditional/

Decision

Diamonds show a

decision/conditional

(this is normally if, else if/elif,

while and for)

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - II BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 3/16

 python code

if number <=10:

 print("That's a small number!")

Note: Pseudo code may seem unnecessary but it is very useful to draft bits of code without

worrying about the specifics of making it understandable to a computer.

Example 1

 This program asks the user their name then says "Hello [Name]":

flowchart for Example 1

Note: This flow chart only shows ovals and parallelograms because the code only has

a start and end and one input and one output.

pseudo code for Example 1

input username

 output "Hello username"

Python code for Example 1

name= input("What is your name?")

 print("Hello "+ name)

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - II BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 4/16

Example 2

Description for Example 2

 This program asks the user to "Pick a number:" then prints 1 of 3 different outputs based

on how big the number is.

flow chart for Example 2

pseudo code for Example 2

number = input "Pick a number:"

if number <= 10 then

 output small number sentence

if number > 10 and <= 80

 output medium number sentence

else

 output large number sentence

Python code for Example 2

number=int(input("Pick a number: "))

if number <=10:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - II BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 5/16

 print("That's a small number!")

elif number >10 and number <=80:

 print("That's a medium sized number")

else:

 print("Wow that's big!")

 The common way to represent loops is with a diamond symbol:

 This is the same way we show a decision (if, else if/elif etc).

 For loops normally repeat a nested block of code a set number of times or for a set range

of data.

 while loops repeat a set block of code while a condition is true.

 The diamond symbol is used with loops to show the way the computer repeats a nested

block of code then moves on to the next step.

 One of the easiest ways to think about it is that there are normally two paths the computer

can go down when it reaches a loop:

 the code in the loop

 the code after the loop

For example:

i=0

whilei<10:

 print(i)

 i+=1

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - II BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 6/16

Note: In this example there is no code after the loop so we represent this with the end symbol.

Functions In Flowcharts

 Another type of symbol that is important for more advanced programs is the symbol used

for functions.

 Functions are sometimes also known as modules or pre-defined processes; they

represent a completed block of code that can be called form other parts of a program.

 Functions are not taught in the Level 1 Python course and may not be required for basic

programs.

 (They are not required for Level 1 NCEA in New Zealand but they are for Level 2.)

 Functions are represented with this symbol:

 Representing the contents of functions in flowcharts.

 A common way to represent the contents of functions is with separate unconnected

flowcharts.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - II BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 7/16

 The name of the function is normally added to the start symbol in these unconnected

flowcharts.

 There may be times when you do not need to show the contents of every function in your

flowchart.

 The example below shows a rough diagram of a program that makes use of functions that

convert Farenheit to Celcius and compare the current temperate to the monthly average.

This is a rough example only to show the idea of how you can represent functions in

flowcharts; often the functions will be far more complex than the examples below.

DECISION TABLE

 A decision table is used to represent conditional logic by creating a list of tasks depicting

business level rules. Decision tables can be used when there is a consistent number of a

condition that must be evaluated and assigned a specific set of actions to be used when

the conditions are finally met.

 Decision tables are fairly similar to decision trees except for the fact that decision tables

will always have the same number of conditions that need to be evaluated and actions

that must be performed even if the set of branches being analyzed is resolved to true. A

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - II BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 8/16

decision tree, on the other hand, can have one branch with more conditions that need to

be evaluated than other branches on the tree.

 Decision tables are a concise visual representation for specifying which actions to

perform depending on given conditions. They are algorithms whose output is a set of

actions. The information expressed in decision tables could also be represented

as decision trees or in a programming language as a series of if-then-else and switch-case

statements.

Example

 The limited-entry decision table is the simplest to describe. The condition alternatives are

simple Boolean values, and the action entries are check-marks, representing which of the

actions in a given column are to be performed.

 A technical support company writes a decision table to diagnose printer problems based

upon symptoms described to them over the phone from their clients.

 The following is a balanced decision table (created by Systems Made Simple).

Printer troubleshooter

Rules

Conditions

Printer prints No No No No Yes Yes Yes Yes

A red light is flashing Yes Yes No No Yes Yes No No

Printer is recognized by
computer

No Yes No Yes No Yes No Yes

Actions

Check the power cable

—

Check the printer-
computer cable

—

Ensure printer software
is installed

—

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Decision_tree
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Conditional_(programming)
https://en.wikipedia.org/wiki/Switch_statement

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - II BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 9/16

Check/replace ink

—

Check for paper jam

—

 Of course, this is just a simple example (and it does not necessarily correspond to the

reality of printer troubleshooting), but even so, it demonstrates how decision tables can

scale to several conditions with many possibilities.

ALGORITHMS

 Algorithm is a step-by-step procedure, which defines a set of instructions to be executed

in a certain order to get the desired output. Algorithms are generally created independent

of underlying languages, i.e. an algorithm can be implemented in more than one

programming language. From the data structure point of view, following are some

important categories of algorithms –

 Search − Algorithm to search an item in a data structure.

 Sort − Algorithm to sort items in a certain order.

 Insert − Algorithm to insert item in a data structure.

 Update − Algorithm to update an existing item in a data structure.

 Delete − Algorithm to delete an existing item from a data structure.

Characteristics of an Algorithm

 Not all procedures can be called an algorithm. An algorithm should have the following

characteristics –

 Unambiguous − Algorithm should be clear and unambiguous. Each of its

steps , and their inputs/outputs should be clear and must lead to only one

meaning.

 Input − An algorithm should have 0 or more well-defined inputs.

 Output − An algorithm should have 1 or more well-defined outputs, and

should match the desired output.

 Finiteness − Algorithms must terminate after a finite number of steps.

 Feasibility − Should be feasible with the available resources.

 Independent − An algorithm should have step-by-step directions, which

should be independent of any programming code.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - II BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 10/16

How to Write an Algorithm?

 There are no well-defined standards for writing algorithms. Rather, it is problem and

resource dependent. Algorithms are never written to support a particular programming

code.

 As we know that all programming languages share basic code constructs like loops ,

flow-control , etc. These common constructs can be used to write an algorithm.

 We write algorithms in a step-by-step manner, but it is not always the case. Algorithm

writing is a process and is executed after the problem domain is well-defined. That is, we

should know the problem domain, for which we are designing a solution.

 Example Let's try to learn algorithm-writing by using an example.

 Problem − Design an algorithm to add two numbers and display the result.

Step 1 − START

Step 2 − declare three integers a, b & c

Step 3 − define values of a & b

Step 4 − add values of a & b

Step 5 − store output of step 4 to c

Step 6 − print c

Step 7 − STOP

 Algorithms tell the programmers how to code the program.

 Alternatively, the algorithm can be written as –

Step 1 − START ADD

Step 2 − get values of a & b

Step 3 − c ← a + b

Step 4 − display c

Step 5 − STOP

 In design and analysis of algorithms, usually the second method is used to describe an

algorithm. It makes it easy for the analyst to analyze the algorithm ignoring all unwanted

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - II BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 11/16

definitions. He can observe what operations are being used and how the process is

flowing.

 Writing step numbers, is optional.

 We design an algorithm to get a solution of a given problem. A problem can be solved in

more than one ways.

 Hence, many solution algorithms can be derived for a given problem. The next step is to

analyze those proposed solution algorithms and implement the best suitable solution.

STRUCTURED PROGRAMMING
 Structured programming is concerned with the structures used in a computer program.

Generally, structures of computer program comprise decisions, sequences, and loops.

The decision structures are used for conditional execution of statements (for example, 'if

statement). The sequence structures are used for the sequentially executed statements.

The loop structures are used for performing some repetitive tasks in the program.

 Structured programming forces a logical structure in the program to be written in an

efficient and understandable manner. The purpose of structured programming is to make

the software code easy to modify when required. Some languages such as Ada, Pascal,

and dBase are designed with features that implement the logical program structure in the

software code. Primarily, the structured programming focuses on reducing the following

statements from the program.

o 'GOTO' statements.

o 'Break' or 'Continue' outside the loops.

o Multiple exit points to a function, procedure, or subroutine. For example, multiple

'Return' statements should not be used.

o Multiple entry points to a function, procedure, or a subroutine.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - II BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 12/16

 Structured programming generally makes use of top-down design because program

structure is divided into separate subsections. A defined function or set of similar

functions is kept separately. Due to this separation of functions, they are easily loaded in

the memory. In addition, these functions can be reused in one or more programs. Each

module is tested individually. After testing, they are integrated with other modules to

achieve an overall program structure. Note that a key characteristic of a structured

statement is the presence of single entry and single exit point. This characteristic implies

that during execution, a structured statement starts from one defined point and terminates

at another defined point.

 Structured programming is a programming paradigm aimed at improving the clarity,

quality, and development time of a computer program by making extensive use of the

structured control flow constructs of selection (if/then/else) and repetition (while

and for), block structures, and subroutines in contrast to using simple tests and jumps

such as the go to statement, which can lead to "spaghetti code" that is potentially difficult

to follow and maintain.

 It emerged in the late 1950s with the appearance of the ALGOL 58 and ALGOL

60programming languages, with the latter including support for block structures.

Contributing factors to its popularity and widespread acceptance, at first in academia and

later among practitioners, include the discovery of what is now known as the structured

program theoremin 1966, and the publication of the influential "Go To Statement

Considered Harmful" open letter in 1968 by Dutch computer scientist Edsger W.

Dijkstra, who coined the term "structured programming".

 Structured programming is most frequently used with deviations that allow for clearer

programs in some particular cases, such as when exception handling has to be performed.

Control structures
Following the structured program theorem, all programs are seen as composed of control

structures:

 "Sequence"; ordered statements or subroutines executed in sequence.

 "Selection"; one or a number of statements is executed depending on the state of the

program. This is usually expressed with keywords such as if..then..else..endif.

 "Iteration"; a statement or block is executed until the program reaches a certain state, or

operations have been applied to every element of a collection. This is usually expressed

with keywords such as while, repeat, for or do..until. Often it is recommended that each

loop should only have one entry point (and in the original structural programming, also

only one exit point, and a few languages enforce this).

https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Conditional_(computer_programming)
https://en.wikipedia.org/wiki/For_loop
https://en.wikipedia.org/wiki/Block_(programming)
https://en.wikipedia.org/wiki/Subroutines
https://en.wikipedia.org/wiki/Go_to
https://en.wikipedia.org/wiki/Spaghetti_code
https://en.wikipedia.org/wiki/ALGOL_58
https://en.wikipedia.org/wiki/ALGOL_60
https://en.wikipedia.org/wiki/ALGOL_60
https://en.wikipedia.org/wiki/ALGOL_60
https://en.wikipedia.org/wiki/Structured_program_theorem
https://en.wikipedia.org/wiki/Structured_program_theorem
https://en.wikipedia.org/wiki/Structured_program_theorem
https://en.wikipedia.org/wiki/Go_To_Statement_Considered_Harmful
https://en.wikipedia.org/wiki/Go_To_Statement_Considered_Harmful
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/Structured_program_theorem
https://en.wikipedia.org/wiki/Control_structure
https://en.wikipedia.org/wiki/Control_structure
https://en.wikipedia.org/wiki/Control_structure
https://en.wikipedia.org/wiki/Keyword_(computer_programming)
https://en.wikipedia.org/wiki/Conditional_(programming)
https://en.wikipedia.org/wiki/While_loop
https://en.wikipedia.org/wiki/Do_while_loop
https://en.wikipedia.org/wiki/For_loop
https://en.wikipedia.org/wiki/Do_while_loop

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - II BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 13/16

 "Recursion"; a statement is executed by repeatedly calling itself until termination

conditions are met. While similar in practice to iterative loops, recursive loops may be

more computationally efficient, and are implemented differently as a cascading stack.

Graphical representation of the three basic patterns — sequence, selection, and repetition

— using NS diagrams (blue) and flow charts (green).

Subroutines

 Subroutines; callable units such as procedures, functions, methods, or subprograms are

used to allow a sequence to be referred to by a single statement.

Blocks

 Blocks are used to enable groups of statements to be treated as if they were one

statement. Block-structured languages have a syntax for enclosing structures in some

formal way, such as an if-statement bracketed by if..fi as in ALGOL 68, or a code section

bracketed by BEGIN..END, as in PL/I and Pascal, whitespace indentation as in Python -

or the curly braces {...} of C and many later languages.

PROGRAMMING METHODOLOGIES

 Programming refers to the method of creating a sequence of instructions to enable

the computer to perform a task. It is done by developing logic and then writing

instructions in a programming language. A program can be written using various

programming practices available. A programming practice refers to the way of writing

a program and is used along with coding style guidelines. Some of the commonly used

programming practices include top-down programming, bottom-up programming,

structured programming, and information hiding.

Top-down Programming
 Top-down programming focuses on the use of modules. It is therefore also known as

modular programming. The program is broken up into small modules so that it is easy to

trace a particular segment of code in the software program. The modules at the top level

are those that perform general tasks and proceed to other modules to perform a particular

task. Each module is based on the functionality of its functions and procedures. In this

approach, programming begins from the top level of hierarchy and progresses towards

https://en.wikipedia.org/wiki/Structured_program_theorem
https://en.wikipedia.org/wiki/Nassi%E2%80%93Shneiderman_diagram
https://en.wikipedia.org/wiki/Flow_chart
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Block_(programming)
https://en.wikipedia.org/wiki/ALGOL_68
https://en.wikipedia.org/wiki/PL/I
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/Whitespace_character
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Curly_brace_family#Curly-bracket_languages
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information
https://en.wikipedia.org/wiki/File:Structured_program_patterns.png

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - II BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 14/16

the lower levels. The implementation of modules starts with the main module. After the

implementation of the main module, the subordinate modules are implemented and the

process follows in this way. In top-down programming, there is a risk of implementing

data structures as the modules are dependent on each other and they nave to share one or

more functions and procedures. In this way, the functions and procedures are globally

visible. In addition to modules, the top-down programming uses sequences and the nested

levels of commands.

Disadvantages of top-down programming

 Top-down programming complicates testing. Noting executable exists until the very late

in the development, so in order to test what has been done so far, one must write stubs .

 Furthermore, top-down programming tends to generate modules that are very specific to

the application that is being written, thus not very reusable.

 But the main disadvantage of top-down programming is that all decisions made from the

start of the project depend directly or indirectly on the high-level specification of the

application. It is a well-known fact that this specification tends to change over time.

When that happens, there is a great risk that large parts of the application need to be

rewritten.

How does top-down programming work?

 Top-down programming tends to generate modules that are based on functionality,

usually in the form of functions or procedures. Typically, the high-level specification of

the system states functionality. This high-level description is then refined to be a

sequence or a loop of simpler functions or procedures, that are then themselves refined,

etc.

 In this style of programming, there is a great risk that implementation details of many

data structures have to be shared between modules, and thus globally exposed. This in

turn makes it tempting for other modules to use these implementation details, thereby

creating unwanted dependencies between different parts of the application.

Bottom-up Programming
 Bottom-up programming refers to the style of programming where an application is

constructed with the description of modules. The description begins at the bottom of the

hierarchy of modules and progresses through higher levels until it reaches the top.

Bottom-up programming is just the opposite of top-down programming. Here, the

program modules are more general and reusable than top-down programming.

http://dept-info.labri.fr/~strandh/Teaching/MTP/Common/Strandh-Tutorial/glossary.html

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - II BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 15/16

 It is easier to construct functions in bottom-up manner. This is because bottom-up

programming requires a way of passing complicated arguments between functions. It

takes the form of constructing abstract data types in languages such as C++ or Java,

which can be used to implement an entire class of applications and not only the one that

is to be written. It therefore becomes easier to add new features in a bottom-up approach

than in a top-down programming approach.

Advantages of bottom-up programming

 Bottom-up programming has several advantages over top-down programming .

 Testing is simplified since no stubs are needed. While it might be necessary to write test

functions, these are simpler to write than stubs, and sometimes not necessary at all, in

particular if one uses an interactive programming environment such as Common Lisp or

GDB.

 Pieces of programs written bottom-up tend to be more general, and thus more reusable,

than pieces of programs written top-down. In fact, one can argue that the purpose bottom-

up programming is to create an application-specific language . Such a language is

suitable for implementing an entire class of applications, not only the one that is to be

written. This fact greatly simplifies maintenance, in particular adding new features to the

application. It also makes it possible to delay the final decision concerning the exact

functionality of the application. Being able to delay this decision makes it less likely that

the client has changed his or her mind between the establishment of the specifications of

the application and its implementation.

How does bottom-up programming work?
 In a language such as C or Java, bottom-up programming takes the form of

constructing abstract data types from primitives of the language or from existing abstract

data types.

 In Common Lisp, in addition to constructing abstract data types, it is common to

build functions bottom-up from simpler functions, and to use macros to construct

new special forms from simpler ones.

 One may ask why it is not possible to construct functions and special forms bottom-up in

other languages than Common Lisp. Constructing functions bottom-up requires a way of

passing complicated arguments between functions. Common Lisp uses lists for such

argument passing. Lists are flexible standardized data structures in the language. In other

languages, data structures would have to be defined for such parameter passing only,

making it more like an abstract data type than just a function. With respect to special

forms, only the two-level syntax of Common Lisp allows a flexible enough macro facility

for bottom-up programming of special forms.

http://ecomputernotes.com/java/data-type-variable-and-array/explain-data-types-in-java
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/top-down-programming.html
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/glossary.html
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/glossary.html
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/glossary.html
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/glossary.html
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/building-specialized-languages.html
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/abstract-data-types.html
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/syntax.html

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - II BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 16/16

POSSIBLE QUESTIONS

UNIT – II

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. Define Flowchart

2. What is meant by Decision table?

3. List the types of programming methodologies

4. Define Algorithm

5. List the characteristics of Algorithms

PART – C (6 MARKS)

1. Discuss in detail about Structured Programming.

2. Explain about Top down Programming Methodology

3. Explain about Bottom up Programming Methodology

4. Discuss in detail about Decision table

5. Explain the process of Flowcharts with suitable examples

6. Explain how to write an Algorithm

7. Explain the process of Functions in Flowchart

8. Difference between Top down and Bottom up Methodologies

9. Demonstrate the program to find the largest of three numbers with Flowcharts,

pseudo code and Python

10. Describe Algorithms and its Characteristics

Questions Opt1 Opt2 Opt3 Opt4 Key

Method which uses a list of well defined instructions to complete a task starting from a given initial state from a given initial state to end state is calls asProgram Flowchart Algorithm Process Algorithm

The chart that contains only function flow and no code is called asflowchart Structure chart Algorithm Process

Structure

chart

The sequence logic will not be used while

Accepting input

from user

Giving output

to the user

Comparing two

sets of data

Adding two

numbers

Giving output

to the user

Flowcharts and Algorithms are used for

Better

Programming

Easy testing and

Debugging Efficient Coding All All

An Algorithm represented in the form of

programming languages is Flowchart Pseudo code Program Process Program

Which of the following is not a principle of

structured programming?

Design the

program in top-

down manner

Write each

program

module as a

series of control

structures

Code the program

so that it runs

correctly without

testing

Use good

programming

Design the

program in top-

down manner

Which of the following is not a basic control

structure The process The decision The Loop The sequential The process

Which of the following is a pictorial

representation of an algorithm? Pseudo code Program Flowchart Algorithm Flowchart

PART - A (Online Examination)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore – 641 021.

(For the Candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - II : (Objective Type Multiple choice Questions each Question carries one Mark)

 PROGRAMMING IN PYTHON [16CAU501B]

Which of the following symbol in a

flowchart are used to indicate all arithmetic

processes of adding, subtracting, multiplying

and dividing ? Input/output terminal Processing Decision Processing

A flowchart that outlines the main segments

of program is called as Micro flowchart

Macro

flowchart Flowchart Algorithm

Macro

flowchart

A flowchart that outlines with all detail is

called as Micro flowchart

Macro

flowchart Flowchart Algorithm

Micro

flowchart

Pseudo code is also known as

Program Design

Language

Hardware

Language Software Language Algorithm

Program

Design

Language

Pseudo code emphasizes on Development Coding Design Debugging Design

In which of the following pseudo code

instructions are written in the order or

sequence in which they are to be performed? Selection Logic Sequence Logic Iteration Logic Looping Logic

Sequence

Logic

Which of the following logic is used to

produce loops in program logic when one or

more instruction may be executed several

times depending on some conditions? Selection Logic Sequence Logic Iteration Logic Looping Logic Iteration Logic

Selection logic also called as Sequence Logic Iteration Logic Looping Logic Decision Logic

Decision

Logic

Which of the following program planning

tool allows the programmers to plan

program logic by writing program

instruction in an ordinary language? Flowchart Pseudo code Program Looping Pseudo code

Algorithm is

step by step

execution of

program Object file Executable file Source file

step by step

execution of

program

Kite box in flow chart is used for Connecter Decision Statement Looping Decision

Which of the following is not a

characteristic of good algorithm? Precise Ambiguous

Finite number of

steps

Logical flow of

control

Finite number

of steps

Diagrammatic representation of an

algorithm is Flowchart

Data flow

Diagram Algorithm design Pseudo code Flowchart

What symbol is used to represent output in a

flowchart? Square Circle Parallelogram Triangle Parallelogram

What is the standard terminal symbol for

flowchart? Square Circle Parallelogram Triangle Circle

The following pseudo code is an example of

_______ structure: Get number While

number is positive Add to sum Sequence Decision Loop Nested Loop

The following pseudo code is an example of

______structure:Get number Get another

number If first number is greater than

second then Print first number Else print

second number Sequence Decision Loop Nested Decision

The following pseudo code is an example of

________structure: Get number Get another

number Multiply numbers Print result Sequence Decision Loop Nested Sequence

structured program can be easily broken

down into routines or _______that can be

assigned to any number of programmers Segments Modules Units Sequences Modules

A Decision table is ____________

represents the

information flow

documents

rules, that select

one or more

actions, based

on one or more

conditions,

from a set of

possible

conditions

gets an accurate

picture of the

system

shows the decision

paths

documents

rules, that

select one or

more actions,

based on one

or more

conditions,

from a set of

possible

conditions

The Structure Chart is ________

a document of

what has to be

accomplished

a hierarchical

partitioning of

the program

a statement of

information -

processing

requirements

shows the decision

paths

a hierarchical

partitioning of

the program

After a programmer plans the logic of a

program ,she /he will next

Understand the

problem

Translate the

program Test the program Code the program

Code the

program

In a case structure of the loop, the loop body

continues to execute as long as the answer to

the controlling question is yes, or true. Else Then Default Loop Else

Which of the following statement cause

program control to end up almost anywhere

in the program? go to for while do while go to

Which of the following statement allows us

to make a decision from the number of

choices? break Switch for go to Switch

Which of the following keyword is followed

by an integer or character constant? switch case for void case

Which of the following enhances the

versatility of the computer to perform a set

of instructions repeatedly? Function Loop header files statement Loop

Which of the following contains parenthesis

after the „while‟ loop? Condition statement count value Condition

The condition being tested within the loop

may be relational or relational or logical

operations while switch break continue while

The three things inside the for loop are

separated by colon comma semicolon hyphen semicolon

Which of the following statement associated

with an „if‟? switch goto break do while break

„do while‟ loop is useful when we want that

statement within the loop must be executed Only Once At least Once More than once two At least Once

The mechanism used to convey information

to the function is the Argument commands loops statements Argument

Which of the following can be replaced by if switch while continue for switch

A _________________ is essentially the

breaking down of a system to gain insight

into its compositional sub-systems in a

reverse engineering fashion.

bottom-

up approach program top-down approach down top approach

top-

down approac

h

A __________________ is the piecing

together of systems to give rise to more

complex systems, thus making the original

systems sub-systems of the emergent

system.

bottom-

up approach program top-down approach down top approach

bottom-

up approach

__________ provide internal documentation

of a program. switch comments count value comments

_________ makes the statements clear and

readable switch comments count indentation indentation

___________ refers to its presentation style

so that the program becomes more readable

and presentable good program program

program

representation data representation

program

representation

________________ is concerned with the

structures used in a computer program. Programming Program

Structured

programming

Object Oriented

Programming

Structured

programming

___________________ tends to generate

modules that are based on functionality,

usually in the form of functions or

Structured

programming

Top-down

programming

bottom up

programming

Object Oriented

Programming

Top-down

programming
. A _______________ refers to the way of

writing a program and is used along with

coding style guidelines

Structured

programming

Top-down

programming

bottom up

programming

programming

practice

programming

practice

Algorithm to search an item in a data

structure Search Sort Insert Update Search

Algorithm to sort items in a certain order Search Sort Insert Update Sort

 Algorithm to insert item in a data structure. Search Sort Insert Update Insert

Algorithm to delete an existing item from a

data structure. delete Sort Insert Update delete

Algorithm to update an existing item in a

data structure Search Sort Insert Update Update

Each of its steps , and their inputs/outputs

should be clear and must lead to only one

meaning. Which means? Output Input Unambiguous Finiteness Unambiguous

Algorithms must terminate after a finite

number of steps Output Input Unambiguous Finiteness Finiteness

___________ is an algorithm should have

step-by-step directions, which should be

independent of any programming code. Output Independent Unambiguous Finiteness Independent

_________ can result in inefficient,

unstructured code known as 'spaghetti code' Algorithm planning Poor planning good planning Poor planning

A standard way to plan code is with

_____________ Algorithm planning Poor planning flowcharts flowcharts

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 1/22

UNIT – III

SYLLABUS

Overview of Programming: Structure of a Python Program - Elements of Python.

OVERVIEW OF PROGRAMMING

 Programming is the process of taking an algorithm and encoding it into a notation, a

programming language, so that it can be executed by a computer. Although many

programming languages and many different types of computers exist, the important first

step is the need to have the solution. Without an algorithm there can be no program.

 Python is one of those rare languages which can claim to be both simple and powerful.

You will find that you will be pleasantly surprised on how easy it is to concentrate on the

solution to the problem rather than the syntax and structure of the language you are

programming in.

 The official introduction to Python is

 Python is an easy to learn, powerful programming language. It has efficient high-level

data structures and a simple but effective approach to object-oriented programming.

Python's elegant syntax and dynamic typing, together with its interpreted nature, make it

an ideal language for scripting and rapid application development in many areas on most

platforms.

 I will discuss most of these features in more detail in the next section.

STRUCTURE OF PYTHON

The Python programming Language

 The programming language you will be learning is Python. Python is an example of a

high-level language; other high-level languages you might have heard of are C, C++,

Perl, and Java.

 As you might infer from the name “high-level language,” there are also lowlevel

languages, sometimes referred to as “machine languages” or “assembly 2 The way of the

program languages.” Loosely speaking, computers can only execute programs written in

low-level languages. Thus, programs written in a high-level language have to be

processed before they can run. This extra processing takes some time, which is a small

disadvantage of high-level languages.

 But the advantages are enormous. First, it is much easier to program in a high-level

language. Programs written in a high-level language take less time to write, they are

shorter and easier to read, and they are more likely to be correct. Second, high-level

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 2/22

languages are portable, meaning that they can run on different kinds of computers with

few or no modifications. Low-level programs can run on only one kind of computer and

have to be rewritten to run on another.

 Due to these advantages, almost all programs are written in high-level languages. Low-

level languages are used only for a few specialized applications. Two kinds of programs

process high-level languages into low-level languages: interpreters and compilers. An

interpreter reads a high-level program and executes it, meaning that it does what the

program says. It processes the program a little at a time, alternately reading lines and

performing computations.

 A compiler reads the program and translates it completely before the program starts

running. In this case, the high-level program is called the source code, and the translated

program is called the object code or the executable. Once a program is compiled, you can

execute it repeatedly without further translation.

 Python is considered an interpreted language because Python programs are executed by

an interpreter. There are two ways to use the interpreter: command line mode and script

mode. In command-line mode, you type Python programs and the interpreter prints the

result:

$ python

Python 2.4.1 (#1, Apr 29 2005, 00:28:56)

Type "help", "copyright", "credits" or "license" for more information.

>>> print 1 + 1

2

 The first line of this example is the command that starts the Python interpreter. The next

two lines are messages from the interpreter. The third line starts with >>>, which is the

prompt the interpreter uses to indicate that it is ready. We typed print 1 + 1, and the

interpreter replied 2. Alternatively, you can write a program in a file and use the

interpreter to execute the contents of the file. Such a file is called a script. For example,

we used a text editor to create a file named latoya.py with the following contents:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 3/22

print 1 + 1

 By convention, files that contain Python programs have names that end with .py.

 To execute the program, we have to tell the interpreter the name of the script:

 $ python latoya.py 2

 In other development environments, the details of executing programs may differ. Also,

most programs are more interesting than this one.

 Most of the examples in this book are executed on the command line. Working on the

command line is convenient for program development and testing, because you can type

programs and execute them immediately. Once you have a working program, you should

store it in a script so you can execute or modify it in the future.

FEATURES OF PYTHON

 Simple

 Python is a simple and minimalistic language. Reading a good Python program

feels almost like reading English, although very strict English! This pseudo-code

nature of Python is one of its greatest strengths. It allows you to concentrate on

the solution to the problem rather than the language itself.

 Easy to Learn

 As you will see, Python is extremely easy to get started with. Python has an

extraordinarily simple syntax, as already mentioned.

 Free and Open Source

 Python is an example of a FLOSS (Free/LibrÃ© and Open Source Software). In

simple terms, you can freely distribute copies of this software, read it's source

code, make changes to it, use pieces of it in new free programs, and that you

know you can do these things. FLOSS is based on the concept of a community

which shares knowledge. This is one of the reasons why Python is so good - it has

been created and is constantly improved by a community who just want to see a

better Python.

 High-level Language

 When you write programs in Python, you never need to bother about the low-level

details such as managing the memory used by your program, etc.

 Portable

 Due to its open-source nature, Python has been ported (i.e. changed to make it

work on) to many platforms. All your Python programs can work on any of these

platforms without requiring any changes at all if you are careful enough to avoid

any system-dependent features.

 You can use Python on Linux, Windows, FreeBSD, Macintosh, Solaris, OS/2,

Amiga, AROS, AS/400, BeOS, OS/390, z/OS, Palm OS, QNX, VMS, Psion,

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 4/22

Acorn RISC OS, VxWorks, PlayStation, Sharp Zaurus, Windows CE and even

PocketPC !

 Interpreted

 This requires a bit of explanation.

 A program written in a compiled language like C or C++ is converted from the

source language i.e. C or C++ into a language that is spoken by your computer

(binary code i.e. 0s and 1s) using a compiler with various flags and options. When

you run the program, the linker/loader software copies the program from hard

disk to memory and starts running it.

 Python, on the other hand, does not need compilation to binary. You just run the

program directly from the source code. Internally, Python converts the source

code into an intermediate form called bytecodes and then translates this into the

native language of your computer and then runs it. All this, actually, makes using

Python much easier since you don't have to worry about compiling the program,

making sure that the proper libraries are linked and loaded, etc, etc. This also

makes your Python programs much more portable, since you can just copy your

Python program onto another computer and it just works!

 Object Oriented

 Python supports procedure-oriented programming as well as object-oriented

programming. In procedure-oriented languages, the program is built around

procedures or functions which are nothing but reusable pieces of programs.

In object-oriented languages, the program is built around objects which combine

data and functionality. Python has a very powerful but simplistic way of doing

OOP, especially when compared to big languages like C++ or Java.

 Extensible

 If you need a critical piece of code to run very fast or want to have some piece of

algorithm not to be open, you can code that part of your program in C or C++ and

then use them from your Python program.

 Embeddable

 You can embed Python within your C/C++ programs to give 'scripting'

capabilities for your program's users.

 Extensive Libraries

 The Python Standard Library is huge indeed. It can help you do various things

involving regular expressions, documentation generation, unit testing, threading,

databases, web browsers, CGI, ftp, email, XML, XML-RPC, HTML, WAV files,

cryptography, GUI (graphical user interfaces), Tk, and other system-dependent

stuff. Remember, all this is always available wherever Python is installed. This is

called the 'Batteries Included' philosophy of Python.

 Besides, the standard library, there are various other high-quality libraries such

as wxPython, Twisted, Python Imaging Library and many more.

http://www.wxpython.org/
http://www.twistedmatrix.com/products/twisted
http://www.pythonware.com/products/pil/index.htm

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 5/22

ELEMENTS OF PYTHON

 Python is a high level scripting language with object oriented features.

1. Syntax

 Python programs can be written using any text editor and should have the

extension .py. Python programs do not have a required first or last line, but

can be given the location of python as their first line: #!/usr/bin/python and

become executable. Otherwise, python programs can be run from a command

prompt by typing python file.py. There are no braces {} or semicolons ; in

python. It is a very high level language. Instead of braces, blocks are

identified by having the same indentation.

 Programming languages are traditionally introduced with a trivial example

that does nothing more than write the words Hello world on the screen. The

intention is to illustrate the essential components of the language, and

familiarise the user with the details of entering and running programs.

 The good news is that in Python this is an extremely simple program:

 print "Hello world"

 he program is self-explanatory: note that we indicated what we wanted to print

to the screen by enclosing it in quotation marks.

2. Interpreters, modules, and a more interesting program

 There are two ways of using Python: either using its interactive interpreter as

you have just done, or by writing modules. The interpreter is useful for small

snippets of programs we want to try out. In general, all the examples you see

in this book can be typed at the interactive prompt (»>). You should get into

the habit of trying things out at the prompt: you can do no harm, and it is a

good way of experimenting.

 However, working interactively has the serious drawback that you cannot save

your work. When you exit the interactive interpreter everything you have done

is lost. If you want to write a longer program you create a module. This is just

a text file containing a list of Python instructions. When the module

is run Python simply reads through it one line after another, as though it had

been typed at the interactive prompt.

 When you start up IDLE, you should see the Python interactive interpreter.

You can always recognise an interpreter window by the »> prompt whereas

new module windows are empty. IDLE only ever creates one interpreter

window: if you close it and need to get the interpreter back, select Python

shell from the Run menu. You can have multiple module windows open

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 6/22

simultaneously: as described in Chapter 2 each one is really an editor which

allows you to enter and modify your program code (because of this, they will

often be referred to in this handbook as editor windows). To get a new empty

module (editor) window select New window in the File menu.

 Here is an example of a complete Python module. Type it into an editor

window and run it by choosing Run from the Run menu (or press the F5 key

on your keyboard)3.1.

 print "Please give a number: "

 a = input()

 print "And another: "

 b = input()

 print "The sum of these numbers is: "

 print a + b

 If you get errors then check through your copy for small mistakes like missing

punctuation marks. Having run the program it should be apparent how it

works. The only thing which might not be obvious are the lines

with input(). input() is a function which allows a user to type in a number and

returns what they enter for use in the rest of the program: in this case the

inputs are stored in a and b.

 If you are writing a module and you want to save your work, do so by

selecting Save from the File menu then type a name for your program in the

box. The name you choose should indicate what the program does and consist

only of letters, numbers, and ``_'' the underscore character. The name must

end with a .py so that it is recognised as a Python module, e.g. prog.py.

Furthermore, do NOT use spaces in filenames or directory (folder) names.

3. Variables

 Names and Assignment

 we used variables for the first time: a and b in the example. Variables are used

to store data; in simple terms they are much like variables in algebra and, as

mathematically-literate students, we hope you will find the programming

equivalent fairly intuitive.

 Variables have names like a and b above, or x or fred or z1. Where relevant

you should give your variables a descriptive name, such

as firstname or height 3.2. Variable names must start with a letter and then

may consist only of alphanumeric characters (i.e. letters and numbers) and the

underscore character, ``_''. There are some reserved words which you cannot

use because Python uses them for other things; these are listed in Appendix B.

 We assign values to variables and then, whenever we refer to a variable later

in the program, Python replaces its name with the value we assigned to it. This

is best illustrated by a simple example:

https://pentangle.net/python/handbook/System.html#System
https://pentangle.net/python/handbook/node18.html#foot495
https://pentangle.net/python/handbook/node20.html#foot500
https://pentangle.net/python/handbook/node52.html#Appendix:ReservedWords

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 7/22

 >>> x = 5

 >>> print x

 5

 You assign by putting the variable name on the left, followed by a single =,

followed by what is to be stored. To draw an analogy, you can think of

variables as named boxes. What we have done above is to label a box with an

``x'', and then put the number 5 in that box.

 There are some differences between the syntax 3.3 of Python and normal

algebra which are important. Assignment statements read right to left only. x

= 5 is fine, but 5 = x doesn't make sense to Python, which will report a

SyntaxError. If you like, you can think of the equals sign as an arrow pointing

from the number on the right, to the variable name on the left: and

read the expression as ``assign 5 tox'' (or, if you prefer, as ``x becomes 5'').

However, we can still do many of things you might do in algebra, like:

 >>> a = b = c = 0

 Reading the above right to left we have: ``assign 0 to c, assign c to b,

assign b to a''.

 >>> print a, b, c

 0 0 0

 There are also statements that are alegbraically nonsense, that are perfectly

sensible to Python (and indeed to most other programming languages). The

most common example is incrementing a variable:

 >>> i = 2

 >>> i = i + 1

 >>> print i

 3

 The second line in this example is not possible in maths, but makes sense in

Python if you think of the equals as an arrow pointing from right to left. To

describe the statement in words: on the right-hand side we have looked at

what is in the box labelled i, added 1 to it, then stored the result back in the

same box

4. Types

 Your variables need not be numeric. There are several types. The most useful

are described below:

 Integer: Any whole number:

 >>> myinteger = 0

 >>> myinteger = 15

 >>> myinteger = -23

 >>> myinteger = 2378

 Float: A floating point number, i.e. a non-integer.

 >>> myfloat = 0.1

https://pentangle.net/python/handbook/node20.html#foot501

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 8/22

 >>> myfloat = 2.0

 >>> myfloat = 3.14159256

 >>> myfloat = 1.6e-19

 >>> myfloat = 3e8

 Note that although 2 is an integer, by writing it as 2.0 we indicate that we

want it stored as a float, with the precision that entails.3.4 The last examples

use exponentials, and in maths would be written and . If

the number is given in exponential form it is stored with the precision of

floating point whether or not it is a whole number.

 String: A string or sequence of characters that can be printed on your screen.

They must be enclosed in either single quotes or double quotes--not a mixture

of the two, e.g.

 >>> mystring = "Here is a string"

 >>> mystring = 'Here is another'

 Arrays and Lists: These are types which contain more than one element,

analogous to vectors and matrices in mathematics. Their discussion is deferred

until Section 3.10 ``Arrays''. For the time being, it is sufficient to know that a

list is written by enclosing it in square brackets as follows: mylist = [1, 2, 3, 5]

 If you are not sure what type a variable is, you can use the type() function to

inspect it:

 >>> type(mystring)

 <type 'str'>

 'str' tells you it is a string. You might also get <type 'int'> (integer) and <type

'float'> (float)
3.5

.

 Tuple:A tuple is a collection which is ordered and unchangeable. In Python

tuples are written with round brackets.

 Example

 Create a Tuple:

 thistuple = ("apple", "banana", "cherry")

 print(thistuple)

 Example

 You cannot change values in a tuple:

thistuple = ("apple", "banana", "cherry")

thistuple[1] = "blackcurrant" # test changeability

print(thistuple)

5. Input and output

 Computer programs generally involve interaction with the user. The is called

input and output. Output involves printing things to the screen (and, as we

shall see later, it also involves writing data to files, sending plots to a printer,

etc). We have already seen one way of getting input--the input() function in

https://pentangle.net/python/handbook/node21.html#foot503
https://pentangle.net/python/handbook/node33.html#Elements:Arrays
https://pentangle.net/python/handbook/node21.html#foot504

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 9/22

Section 3.2. Functions will be discussed in more detail in Section 3.9, but for

now we can use the input() function to get numbers (and only numbers) from

the keyboard.

 You can put a string between the parentheses of input() to give the user a

prompt. Hence the example in Section 3.2 could be rewritten as follows:

 a = input("Please give a number: ")

 b = input("And another: ")

 print "The sum of these numbers is:", a + b

 [Note that in this mode of operation the input() function is actually doing

output as well as input!]

 The print command can print several things, which we separate with a comma,

as above. If the print command is asked to print more than one thing,

separated by commas, it separates them with a space. You can

also concatenate (join) two strings using the + operator (note that no spaces

are inserted between concatenated strings):

 >>> x = "Spanish Inquisition"

 >>> print "Nobody expects the" + x

 Nobody expects theSpanish Inquisition

 input() can read in numbers (integers and floats) only. If you want to read in a

string (a word or sentence for instance) from the keyboard, then you should

use the raw_input() function; for example:

 >>> name = raw_input("Please tell me your name: ")

6. Arithmetic

 The programs you write will nearly always use numbers. Python can

manipulate numbers in much the same way as a calculator (as well as in the

much more complex and powerful ways you'll use later). Basic arithmetic

calculations are expressed using Python's (mostly obvious) arithmetic

operators.

 >>> a = 2 # Set up some variables to play with

 >>> b = 5

 >>> print a + b

 7

 >>> print a - b # Negative numbers are displayed as expected

 -3

 >>> print a * b # Multiplication is done with a *

 10

 >>> print a / b # Division is with a forward slash /

 0.4

 >>> print a ** b # The power operation is done with **

 32

https://pentangle.net/python/handbook/node18.html#Elements:Modules
https://pentangle.net/python/handbook/node32.html#Elements:UsingFunctions
https://pentangle.net/python/handbook/node18.html#Elements:Modules

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 10/22

 >>> print b % a # The % operator finds the remainder of a

division

 1

 >>> print 4.5 % 2 # The % operator works with floats too

 0.5

 The above session at the interactive interpreter also illustrates comments. This is

explanatory text added to programs to help anyone (including yourself!)

understand your programs. When Python sees the #symbol it ignores the rest of

the line. Here we used comments at the interactive interpreter, which is not

something one would normally do, as nothing gets saved. When writing modules

you should comment your programs comprehensively, though succinctly. They

should describe your program in sufficient detail so that someone who is not

familiar with the details of the problem but who understands programming

(though not necessarily in Python), can understand how your program works.

Examples in this handbook should demonstrate good practice.

 Although you should write comments from the point of view of someone else

reading your program, it is in your own interest to do it effectively. You will often

come back to read a program you have written some time later. Well written

comments will save you a lot of time. Furthermore, the demonstrators will be able

to understand your program more quickly (and therefore mark you more quickly

too!).

 The rules of precedence are much the same as with calculators. ie. Python

generally evaluates expressions from left to right, but things enclosed in brackets

are calculated first, followed by multiplications and divisions, followed by

additions and subtractions. If in doubt add some parentheses:

 >>> print 2 + 3 * 4

 14

 >>> print 2 + (3 * 4)

 14

 >>> print (2 + 3) * 4

 20

 Parentheses may also be nested, in which case the innermost expressions are

evaluated first; ie.

 >>> print (2 * (3 - 1)) * 4

 16

7. An example of a for loop

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 11/22

 In programming a loop is a statement or block of statements that is executed

repeatedly. for loops are used to do something a fixed number of times (where the

number is known at the start of the loop). Here is an example:

 sumsquares = 0 # sumsquares must have a value because we increment

 # it later.

 for i in [0, 1, 2, 3, 4, 5]:

 print "i now equal to:", i

 sumsquares = sumsquares + i**2 # sumsquares incremented here

 print "sum of squares now equal to:", sumsquares

 print "------"

 print "Done."

 The indentation of this program is essential. Copy it into an empty

module. IDLE will try and help you with the indentation but Using the range

function

8. An example of an if test

 The if statement executes a nested code block if a condition is true. Here is an

example:

 age = input("Please enter your age: ")

 if age > 40:

 print "Wow! You're really old!"

 Copy this into an empty module and try to work out how if works. Make sure to

include the colon and indent as in the example.

 What Python sees is ``if the variable age is a number greater than 40 then print a

suitable comment''. As in maths the symbol `` '' means ``greater than''. The

general structure of an if statement is:

 if [condition]:

 [statements to execute if condition is true]

 [rest of program]

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 12/22

9. Comparison tests and Booleans

 The [condition] is generally written in the same way as in maths. The possibilites

are shown below:

Comparison What it tests

a < b a is less than b

a <= b a is less than or equal to b

a > b a is greater than b

a >= b a is greater than or equal to b

a == b a is equal to b

a != b a is not equal to b

a < b < c a is less than b, which is less than c

 The == is not a mistake. One = is used for assignment, which is different to

testing for equality, so a different symbol is used. Python will complain if you

mix them up (for example by doing if a = 4).

 It will often be the case that you want to execute a block of code if two or more

conditions are simultaneously fulfilled. In some cases this is possible using the

expression you should be familiar with from algebra: a < b < c. This tests

whether a is less than b and b is also less than c.

 Sometimes you will want to do a more complex comparison. This is done

using boolean operators such as and and or:

 if x == 10 and y > z:

 print "Some statements which only get executed if"

 print "x is equal to 10 AND y is greater than z."

 if x == 10 or y > z:

 print "Some statements which get executed if either

 print "x is equal to 10 OR y is greater than z"

 These comparisons can apply to strings too3.9. The most common way you might

use string comparions is to ask a user a yes/no question3.10:

 answer = raw_input("Evaluate again? ")

 if answer == "y" or answer == "Y" or answer == "yes":

 # Do some more stuff

https://pentangle.net/python/handbook/node29.html#foot887
https://pentangle.net/python/handbook/node29.html#foot888

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 13/22

10. else and elif statements

 else and elif statements allow you to test further conditions after the condition

tested by the if statement and execute alternative statements accordingly. They are

an extension to the if statement and may only be used in conjunction with it.

 If you want to execute some alternative statements if an if test fails, then use

an else statement as follows:

 if [condition]:

 [Some statements executed only if [condition] is true]

 else:

 [Some statements executed only if [condition] is false]

 [rest of program]

 If the first condition is true the indented statements directly below it are executed

and Python jumps to [rest of program] Otherwise the nested block below

the else statement is executed, and then Python proceeds to [rest of program].

 The elif statement is used to test further conditions if (and only if) the condition

tested by the if statement fails:

 x = input("Enter a number")

 if 0 <= x <= 10:

 print "That is between zero and ten inclusive"

 elif 10 < x < 20:

 print "That is between ten and twenty"

 else:

 print "That is outside the range zero to twenty"

11. while loops

 while loops are like for loops in that they are used to repeat the nested block

following them a number of times. However, the number of times the block is

repeated can be variable: the nested block will be repeated whilst a condition is

satisfied. At the top of the while loop a condition is tested and if true, the loop is

executed.

 while [condition]:

 [statements executed if the condition is true]

 [rest of program]

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 14/22

 Here is a short example:

 i = 1

 while i < 10:

 print "i equals:", i

 i = i + 1

 print "i is no longer less than ten"

12. Using library functions

 Python contains a large library of standard functions which can be used for

common programming tasks. A function is just some Python code which is

seperated from the rest of the program. This has several advantages: Repeated

sections of code can be re-used without rewriting them many times, making your

program clearer. Furthermore, if a function is separated from the rest of the

program it provides a conceptual separation for the person writing it, so they can

concentrate on either the function, or the rest of the program.

 Python has some built-in functions, for example type() and range() that we have

already used. These are available to any Python program.

 To use a function we call it. To do this you type its name, followed by the

required parameters enclosed in parentheses. Parameters are sometimes called

arguments, and are similar to arguments in mathematics. In maths, if we

write , we are using the function with the argument . Functions

in computing often need more than one variable to calculate their result. These

should be separated by commas, and the order you give them in is important.

Refer to the discussion of the individual functions for details.

 Even if a function takes no parameters (you will see examples of such functions

later), the parentheses must be included.

 However, the functions in the library are contained in separate modules, similar to

the ones you have been writing and saving in the editor so far. In order to use a

particular module, you must explicitly importit. This gives you access to the

functions it contains.

 The most useful module for us is the math library3.11. If you want to use the

functions it contains, put the line from math import * at the top of your program.

 The math functions are then accesible in the same way as the built in functions.

For example, to calculate the and of we would write a module like

this:

 from math import *

 mynumber = pi / 3

https://pentangle.net/python/handbook/node32.html#foot895

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 15/22

 print sin(mynumber)

 print cos(mynumber)

 The math module contains many functions, the most useful of which are listed

below. Remember that to use them you must from math import *.

Function Description

sqrt() Returns the square root of

exp() Return

log() Returns the natural log, i.e.

log10() Returns the log to the base 10 of

sin() Returns the sine of

cos() Return the cosine of

tan() Returns the tangent of

asin() Return the arc sine of

acos() Return the arc cosine of

atan() Return the arc tangent of

fabs() Return the absolute value, i.e. the modulus, of

floor() Rounds a float down to its integer

 The math library also contains two constants: pi, , and e, . These do not

require parentheses (see the above example).

 Note the floor function always rounds down which can produced unexpected

results! For example

 >>> floor(-3.01)

 -4.0

13. Arrays

 The elements of a list can, in principle, be of different types, e.g. [1, 3.5, "boo!"].

This is sometimes useful but, as scientists you will mostly deal with arrays. These

are like lists but each element is of the same type (either integers or floats). This

speeds up their mathematical manipulation by several orders of magnitude.

 Arrays are not a ``core'' data type like integers, floating points and strings. In

order to have access to the array type we must import the Numeric library. This is

done by adding the following line to the start of every program in which arrays

are used:

 from Numeric import *

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 16/22

 When you create an array you must then explicitly tell Python you are doing so as

follows:

 >>> from Numeric import *

 >>> xx = array([1, 5, 6.5, -11])

 >>> print xx

 [1. 5. 6.5 -11.]

 The square brackets within the parentheses are required. You can call an array

anything you could call any other variable.

 The decimal point at the end of 1, 5 and -11 when they are printed indicates they

are now being stored as floating point values; all the elements of an array must be

of the same type and we have included 6.5 in the array so Python automatically

used floats.

14. Making your own functions

 The libraries provide a useful range of facilities but a programmer will often want

or need to write their own functions if, for example, one particular section of a

program is to be used several times, or if a section forms a logically complete

unit.

 Functions must be defined before they are used, so we generally put the

definitions at the very top of a program. Here is a very simple example of a

function definition that returns the sum of the two numbers it is passed:

 >>> def addnumbers(x, y):

 sum = x + y

 return sum

 >>> x = addnumbers(5, 10)

 >>> print x

 15

 The structure of the definition is as follows:

1. The top line must have a def statement: this consists of the word def, the name of

the function, followed by parentheses containing the names of the parameters

passed as they will be referred to within the function.
3.12

.

2. Then an indented code block follows. This is what is executed when the function

is called, i.e. used.

https://pentangle.net/python/handbook/node34.html#foot1319

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 17/22

3. Finally the return statement. This is the result the function will return to the

program that called it. If your function does not return a result but merely

executes some statements then it is not required.

 If you change a variable within a function that change will not be reflected in the

rest of the program. For example:

 >>> def addnumbers(x, y):

 sum = x + y

 x = 1000

 return sum

 >>> x = 5

 >>> y = 10

 >>> answer = addnumbers(x, y)

 >>> print x, y, answer

 5 10 15

 Note that although the variable x was changed in the function, that change is not

reflected outside the function. This is because the function has its own private set

of variables. This is done to minimise the risk of subtle errors in your program

 If you really want a change to be reflected then return a list of the new values as

the result of your function. Lists can then be accessed by offset in the same way

as arrays:

 >>> def addnumbers(x, y):

 sum = x + y

 x = 100000

 return [sum, x]

 >>> x = 5

 >>> y = 10

 >>> answer = addnumbers(x, y)

 >>> print answer[0]

 15

 >>> print answer[1]

 100000

15. File input and output

 So far we have taken input from the keyboard and given output to the screen.

However, You may want to save the results of a calculation for later use or read in

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 18/22

data from a file for Python to manipulate. You give Python access to a file

by opening it:

 >>> fout = open("results.dat", "w")

 fout is then a variable like the integers, floats and arrays we have been using so

far--fout is a conventional name for an output file variable, but you are free to

choose something more descriptive. The openfunction takes two parameters. First

a string that is the name of the file to be accessed, and second a mode. The

possible modes are as follows:

Mode Description

r The file is opened for reading

w The file is opened for writing, and any file with the same name is erased--be careful!

a The file is opened for appending--data written to it is added on at the end

 There are various ways of reading data in from a file. For example,

the readline() method returns the first line the first time it is called, and then the

second line the second time it is called, and so on, until the end of the file is

reached when it returns an empty string:

 >>> fin = open("input.dat", "r")

 >>> fin.readline()

 '10\n'

 >>> fin.readline()

 '20\n'

 >>> fin.readline()

 ''

(The \n characters are newline characters.)

 Note the parentheses are required. If they are not included the file will not be

read. They are to tell Python that you are using the readline() function--a function

is always followed by parentheses, whether it takes any arguments or not.

 You can see from the example that you tell Python to use methods by adding a

full stop followed by the name of the method to the variable name of the file. This

syntax may seem strange3.13 but for now just use the examples below as your

guide to the syntax, and don't worry about what it means.

 The contents are read in as a string but if the data is numeric you need

to coerce them into either floats or integers before they are used in calculations:

 >>> fin = open("input.dat", "r")

https://pentangle.net/python/handbook/node35.html#foot1321

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 19/22

 >>> x = fin.readline()

 >>> type(x)

 <type 'str'>

 >>> y = float(x)

 >>> type(y)

 <type 'float'>

 >>> print y

 10.0

 You can also use the readlines() method (note the plural) to read in all the lines in

a file in one go, returning a list:

 >>> fin.readlines()

 ['This is the first line of the file.\n', 'Second line of the file\n']

 To output or write to a file use the write() method. It takes one parameter--the

string to be written. If you want to start a new line after writing the data, add

a \n character to the end:

 >>> fout = open("output.dat", "w")

 >>> fout.write("This is a test\n")

 >>> fout.write("And here is another line\n")

 >>> fout.close()

 Note that in order to commit changes to a file, you must close() files as above.

 write() must be given a string to write. Attempts to write integers, floats or arrays

will fail:

 >>> fout = open("output.dat", "w")

 >>> fout.write(10)

 Traceback (most recent call last):

 File "<pyshell#65>", line 1, in ?

 fout.write(10)

 TypeError: argument 1 must be string or read-only character

 buffer, not int

 You must coerce numbers into strings using the str() function:

 >>> x = 4.1

 >>> print x

 4.1

 >>> str(x)

 '4.1'

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 20/22

 If you are trying to produce a table then you may find the t character useful. It

inserts a tab character, which will move the cursor forward to the next

tabstop3.14. It is an example of a non-printed character. It leaves only white

space--no characters are printed as such. However, it is still a string character, and

must be enclosed in quotes. For example, to print the variables a and b separated

by a tab you would type:

 print a + "\t" + b

 This is not a perfect method of producing a table. If you are interested in the

``right way'' of doing this, then ask a demonstrator about formatted output.

16. Putting it all together

 This section shows a complete, well commented program to indicate how most of

the ideas discussed so far (Variables, Arrays, Files, etc.) are used together.

Below is a rewritten version of the example in Section 3.2, which did nothing more than add two

numbers together. However, the two numbers are stored in arrays, the numbers are read in by a

separate function, the addition is also done by a separate function, and the result is written to a

file.

 from Numeric import *

 def addnumbers(x, y): # Declare functions first.

 sum = x + y

 return sum

 def getresponse():

 # Create a two element array to store the numbers

 # the user gives. The array is one of floating

 # point numbers because we do not know in advance

 # whether the user will want to add integers or

 # floating point numbers.

 response = zeros(2, Float)

 # Put the first number in the first element of

 # the list:

 response[0] = input("Please give a number: ")

 # Put the second number in the second element:

 response[1] = input("And another: ")

 # And return the array to the rest of the program

 return response

https://pentangle.net/python/handbook/node35.html#foot1295
https://pentangle.net/python/handbook/node18.html#Elements:Modules

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 21/22

 # Allow the user to name the file. Remember this is a string

 # and not a number so raw_input is used.

 filename = raw_input("What file would you like to store the result in?")

 # Set up the file for writing:

 output = open(filename, "w")

 # Put the users response (which is what the getresponse() function

 # returns into a variable called numbers

 numbers = getresponse()

 # Add the two elements of the array together using the addnumbers()

 # function

 answer = addnumbers(numbers[0], numbers[1])

 # Turn the answer into a string and write it to file

 stringanswer = str(answer)

 output.write(stringanswer)

 # And finally, don't forget to close the file!

 output.close()

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - III BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 22/22

POSSIBLE QUESTIONS

UNIT – III

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. What is Programming?

2. List some elements of python

3. Write the syntax of python program

4. List some features of python

5. Define Variables

PART – C (6 MARKS)

1. Explain the Structure of Python Programming.

2. Explain the Features of Python.

3. Explain why python is called as an Interpreter Language.

4. Discuss in detail about Elements of python

5. Explain how to create a variable in python with example.

6. Write a python program to find factors of number

7. Explain the Data types in python.

8. Write a python program to solve the Quadratic Equation

9. Discuss in detail about Array with example

10. Write a python program to find the sum of natural numbers

Questions Opt1 Opt2 Opt3 Opt4 Key

Python is an _____________ Language Logical Interpreted Procedural Structural Interpreted

Python was designed by _________________ John Chambers

Robert

Gentleman

Guido van

Rossum Ritchie

Guido van

Rossum

Which of these in not a core data type? Lists Dictionary Tuples Class Class

Which of the following will run without errors ? round(45.8)

round(6352.898

,2,5) round() round(7463.123,2,1) round(45.8)

What error occurs when you execute? apple =

mango SyntaxError NameError ValueError TypeError NameError

Which of the following is not a complex

number? k = 2 + 3j k = 2 + 3l

 k = complex(2,

3) k = 2 + 3J k = 2 + 3l

What is the type of inf? Boolean Integer Float Complex Float

What does ~4 evaluate to? -5 -4 -3 3 -5

What does ~~~~~~5 evaluate to? 5 -11 11 -5 5

Which of the following is incorrect? float(„inf‟) float(„nan‟) float(‟56‟+‟78‟) float(‟12+34′) float(‟12+34′)

What is the result of round(0.5) – round(-0.5)? 1 2 0 -1 2

What does 3 ^ 4 evaluate to? 81 12 0.75 7 7

Python is an example of a ________________

low level

language

high level

language

middle level

language assembly language

high level

language

PART - A (Online Examination)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore – 641 021.

(For the Candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - III : (Objective Type Multiple choice Questions each Question carries one Mark)

 PROGRAMMING IN PYTHON [16CAU501B]

_________ is an instruction that causes the

Python interpreter to display a value on the

screen. input statement print statement display statement print statement

Evaluate the expression given below if A= 16

and B = 15. A % B // A 0 1 1 -1 0

Which of the following operators has its

associativity from right to left? + // % ** **

What is the value of x if: x = int(43.55+2/2) 43 44 22 23 44

 Which of the following is the truncation

division operator? / % // / //

What is the value of the following

expression:float(22//3+3/3) 8 8 8.3 8.33 8

What is returned by math.ceil(3.4)? 3 4 4.01 3.01 4

What is the output of this expression if

x=22.19? print("%5.2f"%x) 56 56.24 56.23 56.236 56.24

What is the output of the code snippet shown

below? X=”hi”

print(“05d”%X) 00000hi 000hi hi000 error error

Consider the snippet of code shown below and

predict the output. X=”san-foundry”

print(“%56s”,X)

56 blank spaces

before san-

foundry

56 blank spaces

before san and

foundry

56 blank spaces

after san-

foundry no change

56 blank spaces

before san-

foundry

Which of the following commands will create a

list? list1 = list() list1 = [].

list1 = list([1,

2, 3]) all of the mentioned

all of the

mentioned

What is the output when we execute

list(“hello”)?

[„h‟, „e‟, „l‟, „l‟,

„o‟]. [„hello‟]. [„llo‟]. [„olleh‟].

[„h‟, „e‟, „l‟, „l‟,

„o‟].

Suppose listExample is [„h‟,‟e‟,‟l‟,‟l‟,‟o‟], what

is len(listExample)? 5 4 None Error 5

Suppose list1 is [2445,133,12454,123], what is

max(list1) ? 2445 133 12454 123 12454

 Suppose list1 is [3, 5, 25, 1, 3], what is

min(list1) ? 3 5 25 1 1

Suppose list1 is [1, 5, 9], what is sum(list1) ? 1 9 15 Error 15

To shuffle the list(say list1) what function do we

use ? list1.shuffle() shuffle(list1)

random.shuffle

(list1)

random.shuffleList(l

ist1)

random.shuffle(l

ist1)

Suppose list1 is [2, 33, 222, 14, 25], What is

list1[-1] ? Error None 25 2 25

Which of the following is a Python tuple? [1, 2, 3]. (1, 2, 3) {1, 2, 3} {} (1, 2, 3)

Suppose t = (1, 2, 4, 3), which of the following

is incorrect? print(t[3]) t[3] = 45 print(max(t)) print(len(t)) t[3] = 45

What will be the output? >>>t=(1,2,4,3)

>>>t[1:3] (1, 2) (1, 2, 4) (2, 4) (2, 4, 3) (2, 4)

What will be the output? >>>t=(1,2,4,3)

>>>t[1:-1] (1, 2) (1, 2, 4) (2, 4) (2, 4, 3) (2, 4)

What will be the output? d = {"john":40,

"peter":45}

d["john"] 40 45 “john” “peter” 40

What will be the output? >>>t = (1, 2)

>>>2 * t (1, 2, 1, 2) [1, 2, 1, 2]. (1, 1, 2, 2) [1, 1, 2, 2]. (1, 2, 1, 2)

What will be the output? >>>my_tuple = (1, 2,

3, 4)

>>>my_tuple.append((5, 6, 7))

>>>print len(my_tuple) 1 2 5 Error Error

Which of these about a set is not true? Mutable data type

Allows

duplicate values

Data type with

unordered

values Immutable data type

Immutable data

type

Which of the following is not the correct syntax

for creating a set? set([[1,2],[3,4]]) set([1,2,2,3,4]) set((1,2,3,4)) {1,2,3,4} set([[1,2],[3,4]])

What is the output of the following code? nums

= set([1,1,2,3,3,3,4,4])

print(len(nums)) 7

Error, invalid

syntax for

formation of set 4 8 4

Which of the following statements is used to

create an empty set? { } set() []. () set()

What is the output of the following piece of

code when executed in the python shell? >>>

a={5,4}

>>> b={1,2,4,5}

>>> a<b {1,2} TRUE FALSE Invalid operation TRUE

If a={5,6,7,8}, which of the following

statements is false? print(len(a)) print(min(a)) a.remove(5) a[2]=45 a[2]=45

If a={5,6,7}, what happens when a.add(5) is

executed? a={5,5,6,7} a={5,6,7}

Error as there is

no add function

for set data type

Error as 5 already

exists in the set a={5,6,7}

Read the code shown below carefully and pick

out the keys? d = {"john":40, "peter":45}

“john”, 40, 45,

and “peter”

“john” and

“peter” 40 and 45

d = (40:”john”,

45:”peter”)

“john” and

“peter”

What is the output? d = {"john":40, "peter":45}

d["john"] 40 45 “john” “peter” 40

Suppose d = {“john”:40, “peter”:45}, to delete

the entry for “john” what command do we use

d.delete(“john”:4

0) d.delete(“john”) del d[“john”]. del d(“john”:40) del d[“john”].

Read the information given below carefully and

write a list comprehension such that the output

is: [„e‟, „o‟] w="hello"

v=('a', 'e', 'i', 'o', 'u')

[x for w in v if x

in v]

[x for x in w if

x in v]

[x for x in v if

w in v]

[x for v in w for x in

w]

[x for x in w if x

in v]

Which of the statements about dictionary values

if false?

More than one

key can have the

same value

The values of

the dictionary

can be accessed

as dict[key].

Values of a

dictionary must

be unique

Values of a

dictionary can be a

mixture of letters

and numbers

Values of a

dictionary must

be unique

What is the output of the following snippet of

code? >>> a={1:"A",2:"B",3:"C"}

>>> del a

method del

doesn‟t exist for

the dictionary

del deletes the

values in the

dictionary

del deletes the

entire

dictionary

del deletes the keys

in the dictionary

del deletes the

entire dictionary

What is the output of the snippet of code shown

below? ['hello', 'morning'][bool('')] error no output hello morning hello

What is the output of the code shown? ['f',

't'][bool('spam')] t f No output error t

____________ is a named collection of objects,

where each object is identified by an index. number string list index list

____________ is one of the values in a list (or

other sequence). number string list element element

__________is a thing to which a variable can

refer. number object list element object

____________ is a sequence type that is similar

to a list except that it is immutable. number string list tuple tuple

_____________is a type in which the elements

cannot be modified Mutable data type

immutable data

type component Data type

immutable data

type

____________ is a data type in which the

elements can be modified. Mutable data type

immutable data

type component Data type

Mutable data

type

____________ is a collection of key-value pairs

that maps from keys to values. number string dictionary list dictionary

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 1/50

UNIT – IV

SYLLABUS

Introduction to Python: Python Interpreter-Using Python as calculator-Python shell-

Indentation. Atoms-Identifiers and keywords-Literals-Strings-Operators (Arithmetic operator,

Relational operator, Logical or Boolean operator, Assignment, Operator, Ternary operator, Bit

wise operator, Increment or Decrement operator).

INTRODUCTION TO PYTHON

 Python is simple to use, but it is a real programming language, offering much more

structure and support for large programs than shell scripts or batch files can offer. On the

other hand, Python also offers much more error checking than C, and, being a very-high-

level language, it has high-level data types built in, such as flexible arrays and

dictionaries. Because of its more general data types Python is applicable to a much larger

problem domain than Awk or even Perl, yet many things are at least as easy in Python as

in those languages.

 Python allows you to split your program into modules that can be reused in other Python

programs. It comes with a large collection of standard modules that you can use as the

basis of your programs — or as examples to start learning to program in Python. Some of

these modules provide things like file I/O, system calls, sockets, and even interfaces to

graphical user interface toolkits like Tk.

 Python is an interpreted language, which can save you considerable time during program

development because no compilation and linking is necessary. The interpreter can be

used interactively, which makes it easy to experiment with features of the language, to

write throw-away programs, or to test functions during bottom-up program development.

It is also a handy desk calculator.

 Python enables programs to be written compactly and readably. Programs written in

Python are typically much shorter than equivalent C, C++, or Java programs, for several

reasons:

 • The high-level data types allow you to express complex operations in a single

statement;

 • Statement grouping is done by indentation instead of beginning and ending brackets;

 • No variable or argument declarations are necessary.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 2/50

PYTHON INTERPRETER

Invoking the Interpreter

 The Python interpreter is usually installed as /usr/local/bin/python3.7 on those machines

where it is available; putting /usr/local/bin in your Unix shell’s search path makes it

possible to start it by typing the command:

python3.7

 to the shell. Since the choice of the directory where the interpreter lives is an installation

option, other places are possible; check with your local Python guru or system

administrator. (E.g., /usr/local/python is a popular alternative location.)

 On Windows machines, the Python installation is usually placed in C:\Python36, though

you can change this when you’re running the installer. To add this directory to your path,

you can type the following command into the command prompt in a DOS box:

set path=%path%;C:\python36

 Typing an end-of-file character (Control-D on Unix, Control-Z on Windows) at the

primary prompt causes the interpreter to exit with a zero exit status. If that doesn’t work,

you can exit the interpreter by typing the following command: quit().

 The interpreter’s line-editing features include interactive editing, history substitution and

code completion on systems that support readline. Perhaps the quickest check to see

whether command line editing is supported is typing Control-P to the first Python prompt

you get. If it beeps, you have command line editing; see Appendix Interactive Input

Editing and History Substitution for an introduction to the keys. If nothing appears to

happen, or if ^P is echoed, command line editing isn’t available; you’ll only be able to

use backspace to remove characters from the current line.

 The interpreter operates somewhat like the Unix shell: when called with standard input

connected to a tty device, it reads and executes commands interactively; when called with

a file name argument or with a file as standard input, it reads and executes a script from

that file.

 A second way of starting the interpreter is python -c command [arg] ..., which executes

the statement(s) in command, analogous to the shell’s -c option. Since Python statements

often contain spaces or other characters that are special to the shell, it is usually advised

to quote command in its entirety with single quotes.

 Some Python modules are also useful as scripts. These can be invoked using python -

m module [arg] ..., which executes the source file for module as if you had spelled out its

full name on the command line.

https://docs.python.org/3/tutorial/interactive.html#tut-interacting
https://docs.python.org/3/tutorial/interactive.html#tut-interacting
https://docs.python.org/3/using/cmdline.html#cmdoption-c

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 3/50

 When a script file is used, it is sometimes useful to be able to run the script and enter

interactive mode afterwards. This can be done by passing -i before the script.

 All command line options are described in Command line and environment.

 Argument Passing

 When known to the interpreter, the script name and additional arguments thereafter are

turned into a list of strings and assigned to the argv variable in the sys module. You can

access this list by executing import sys. The length of the list is at least one; when no

script and no arguments are given, sys.argv[0] is an empty string. When the script name

is given as '-' (meaning standard input), sys.argv[0] is set to '-'. When -ccommand is

used, sys.argv[0] is set to '-c'. When -m module is used, sys.argv[0] is set to the full name

of the located module. Options found after -c command or -m module are not consumed

by the Python interpreter’s option processing but left in sys.argv for the command or

module to handle.

 Interactive Mode

 When commands are read from a tty, the interpreter is said to be in interactive mode. In

this mode it prompts for the next command with the primary prompt, usually three

greater-than signs (>>>); for continuation lines it prompts with the secondary prompt, by

default three dots (...). The interpreter prints a welcome message stating its version

number and a copyright notice before printing the first prompt:

$ python3.7

Python 3.7 (default, Sep 16 2015, 09:25:04)

[GCC 4.8.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

 Continuation lines are needed when entering a multi-line construct. As an example, take a

look at this if statement:

>>> the_world_is_flat = True

>>> if the_world_is_flat:

... print("Be careful not to fall off!")

...

Be careful not to fall off!

 For more on interactive mode, see Interactive Mode.

https://docs.python.org/3/using/cmdline.html#cmdoption-i
https://docs.python.org/3/using/cmdline.html#using-on-general
https://docs.python.org/3/using/cmdline.html#cmdoption-c
https://docs.python.org/3/using/cmdline.html#cmdoption-m
https://docs.python.org/3/using/cmdline.html#cmdoption-c
https://docs.python.org/3/using/cmdline.html#cmdoption-m
https://docs.python.org/3/reference/compound_stmts.html#if
https://docs.python.org/3/tutorial/appendix.html#tut-interac

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 4/50

The Interpreter and Its Environment

 Source Code Encoding

 By default, Python source files are treated as encoded in UTF-8. In that encoding,

characters of most languages in the world can be used simultaneously in string literals,

identifiers and comments — although the standard library only uses ASCII characters for

identifiers, a convention that any portable code should follow. To display all these

characters properly, your editor must recognize that the file is UTF-8, and it must use a

font that supports all the characters in the file.

 To declare an encoding other than the default one, a special comment line should be

added as the first line of the file. The syntax is as follows:

-*- coding: encoding -*-

 where encoding is one of the valid codecs supported by Python.

 For example, to declare that Windows-1252 encoding is to be used, the first line of your

source code file should be:

-*- coding: cp1252 -*-

 One exception to the first line rule is when the source code starts with a UNIX “shebang”

line. In this case, the encoding declaration should be added as the second line of the file.

For example:

#!/usr/bin/env python3

-*- coding: cp1252 -*-

USING PYTHON AS A CALCULATOR

 Let’s try some simple Python commands. Start the interpreter and wait for the primary

prompt, >>>. (It shouldn’t take long.)

 Numbers

 The interpreter acts as a simple calculator: you can type an expression at it and it will

write the value. Expression syntax is straightforward: the operators +, -, * and / work just

like in most other languages (for example, Pascal or C); parentheses (()) can be used for

grouping. For example:

>>> 2 + 2

4

>>> 50 - 5*6

20

https://docs.python.org/3/library/codecs.html#module-codecs
https://docs.python.org/3/tutorial/appendix.html#tut-scripts
https://docs.python.org/3/tutorial/appendix.html#tut-scripts
https://docs.python.org/3/tutorial/appendix.html#tut-scripts

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 5/50

>>> (50 - 5*6) / 4

5.0

>>> 8 / 5 # division always returns a floating point number

1.6

 The integer numbers (e.g. 2, 4, 20) have type int, the ones with a fractional part

(e.g. 5.0, 1.6) have typefloat. We will see more about numeric types later in the tutorial.

 Division (/) always returns a float. To do floor division and get an integer result

(discarding any fractional result) you can use the // operator; to calculate the remainder

you can use %:

>>> 17 / 3 # classic division returns a float

5.666666666666667

>>>

>>> 17 // 3 # floor division discards the fractional part

5

>>> 17 % 3 # the % operator returns the remainder of the division

2

>>> 5 * 3 + 2 # result * divisor + remainder

17

 With Python, it is possible to use the ** operator to calculate powers :

>>> 5 ** 2 # 5 squared

25

>>> 2 ** 7 # 2 to the power of 7

128

 The equal sign (=) is used to assign a value to a variable. Afterwards, no result is

displayed before the next interactive prompt:

>>> width = 20

>>> height = 5 * 9

>>> width * height

900

 If a variable is not “defined” (assigned a value), trying to use it will give you an error:

>>> n # try to access an undefined variable

Traceback (most recent call last):

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/glossary.html#term-floor-division

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 6/50

 File "<stdin>", line 1, in <module>

NameError: name 'n' is not defined

 There is full support for floating point; operators with mixed type operands convert the

integer operand to floating point:

>>> 4 * 3.75 - 1

14.0

 In interactive mode, the last printed expression is assigned to the variable _. This means

that when you are using Python as a desk calculator, it is somewhat easier to continue

calculations, for example:

>>> tax = 12.5 / 100

>>> price = 100.50

>>> price * tax

12.5625

>>> price + _

113.0625

>>> round(_, 2)

113.06

 This variable should be treated as read-only by the user. Don’t explicitly assign a value to

it — you would create an independent local variable with the same name masking the

built-in variable with its magic behavior.

 In addition to int and float, Python supports other types of numbers, such

as Decimal and Fraction. Python also has built-in support for complex numbers, and uses

the j or J suffix to indicate the imaginary part (e.g. 3+5j).

 Strings

 Besides numbers, Python can also manipulate strings, which can be expressed in several

ways. They can be enclosed in single quotes ('...') or double quotes ("...") with the same

result [2]. \ can be used to escape quotes:

>>> 'spam eggs' # single quotes

'spam eggs'

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/fractions.html#fractions.Fraction
https://docs.python.org/3/library/stdtypes.html#typesnumeric
https://docs.python.org/3/tutorial/introduction.html#id4

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 7/50

>>> 'doesn\'t' # use \' to escape the single quote...

"doesn't"

>>> "doesn't" # ...or use double quotes instead

"doesn't"

>>> '"Yes," they said.'

'"Yes," they said.'

>>> "\"Yes,\" they said."

'"Yes," they said.'

>>> '"Isn\'t," they said.'

'"Isn\'t," they said.'

 In the interactive interpreter, the output string is enclosed in quotes and special characters

are escaped with backslashes. While this might sometimes look different from the input

(the enclosing quotes could change), the two strings are equivalent. The string is enclosed

in double quotes if the string contains a single quote and no double quotes, otherwise it is

enclosed in single quotes. The print() function produces a more readable output, by

omitting the enclosing quotes and by printing escaped and special characters:

>>> '"Isn\'t," they said.'

'"Isn\'t," they said.'

>>> print('"Isn\'t," they said.')

"Isn't," they said.

>>> s = 'First line.\nSecond line.' # \n means newline

>>> s # without print(), \n is included in the output

'First line.\nSecond line.'

>>> print(s) # with print(), \n produces a new line

First line.

Second line.

 If you don’t want characters prefaced by \ to be interpreted as special characters, you can

use raw strings by adding an r before the first quote:

>>> print('C:\some\name') # here \n means newline!

C:\some

ame

>>> print(r'C:\some\name') # note the r before the quote

C:\some\name

https://docs.python.org/3/library/functions.html#print

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 8/50

 String literals can span multiple lines. One way is using triple-quotes: """...""" or '''...'''.

End of lines are automatically included in the string, but it’s possible to prevent this by

adding a \ at the end of the line. The following example:

print("""\

Usage: thingy [OPTIONS]

 -h Display this usage message

 -H hostname Hostname to connect to

""")

 produces the following output (note that the initial newline is not included):

Usage: thingy [OPTIONS]

 -h Display this usage message

 -H hostname Hostname to connect to

 Strings can be concatenated (glued together) with the + operator, and repeated with *:

>>> # 3 times 'un', followed by 'ium'

>>> 3 * 'un' + 'ium'

'unununium'

 Two or more string literals (i.e. the ones enclosed between quotes) next to each other are

automatically concatenated.

>>> 'Py' 'thon'

'Python'

 This feature is particularly useful when you want to break long strings:

>>> text = ('Put several strings within parentheses '

... 'to have them joined together.')

>>> text

'Put several strings within parentheses to have them joined together.'

 This only works with two literals though, not with variables or expressions:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 9/50

>>> prefix = 'Py'

>>> prefix 'thon' # can't concatenate a variable and a string literal

 ...

SyntaxError: invalid syntax

>>> ('un' * 3) 'ium'

 ...

SyntaxError: invalid syntax

 If you want to concatenate variables or a variable and a literal, use +:

>>> prefix + 'thon'

'Python'

 Strings can be indexed (subscripted), with the first character having index 0. There is no

separate character type; a character is simply a string of size one:

>>> word = 'Python'

>>> word[0] # character in position 0

'P'

>>> word[5] # character in position 5

'n'

 Indices may also be negative numbers, to start counting from the right:

>>> word[-1] # last character

'n'

>>> word[-2] # second-last character

'o'

>>> word[-6]

'P'

 Note that since -0 is the same as 0, negative indices start from -1.

 In addition to indexing, slicing is also supported. While indexing is used to obtain

individual characters, slicingallows you to obtain substring:

>>> word[0:2] # characters from position 0 (included) to 2 (excluded)

'Py'

>>> word[2:5] # characters from position 2 (included) to 5 (excluded)

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 10/50

'tho'

 Note how the start is always included, and the end always excluded. This makes sure

that s[:i] + s[i:] is always equal to s:

>>> word[:2] + word[2:]

'Python'

>>> word[:4] + word[4:]

'Python'

 Slice indices have useful defaults; an omitted first index defaults to zero, an omitted

second index defaults to the size of the string being sliced.

>>> word[:2] # character from the beginning to position 2 (excluded)

'Py'

>>> word[4:] # characters from position 4 (included) to the end

'on'

>>> word[-2:] # characters from the second-last (included) to the end

'on'

 One way to remember how slices work is to think of the indices as

pointing between characters, with the left edge of the first character numbered 0. Then the

right edge of the last character of a string of n characters has index n, for example:

 +---+---+---+---+---+---+

 | P | y | t | h | o | n |

 +---+---+---+---+---+---+

 0 1 2 3 4 5 6

-6 -5 -4 -3 -2 -1

 The first row of numbers gives the position of the indices 0…6 in the string; the second

row gives the corresponding negative indices. The slice from i to j consists of all

characters between the edges labeled i and j, respectively.

 For non-negative indices, the length of a slice is the difference of the indices, if both are

within bounds. For example, the length of word[1:3] is 2.

 Attempting to use an index that is too large will result in an error:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 11/50

>>> word[42] # the word only has 6 characters

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: string index out of range

 However, out of range slice indexes are handled gracefully when used for slicing:

>>> word[4:42]

'on'

>>> word[42:]

''

 Python strings cannot be changed — they are immutable. Therefore, assigning to an

indexed position in the string results in an error:

>>> word[0] = 'J'

 ...

TypeError: 'str' object does not support item assignment

>>> word[2:] = 'py'

 ...

TypeError: 'str' object does not support item assignment

 If you need a different string, you should create a new one:

>>> 'J' + word[1:]

'Jython'

>>> word[:2] + 'py'

'Pypy'

 The built-in function len() returns the length of a string:

>>> s = 'supercalifragilisticexpialidocious'

>>> len(s)

34

 Lists

 Python knows a number of compound data types, used to group together other values.

The most versatile is the list, which can be written as a list of comma-separated values

https://docs.python.org/3/glossary.html#term-immutable
https://docs.python.org/3/library/functions.html#len

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 12/50

(items) between square brackets. Lists might contain items of different types, but usually

the items all have the same type.

>>> squares = [1, 4, 9, 16, 25]

>>> squares

[1, 4, 9, 16, 25]

 Like strings (and all other built-in sequence type), lists can be indexed and sliced:

>>> squares[0] # indexing returns the item

1

>>> squares[-1]

25

>>> squares[-3:] # slicing returns a new list

[9, 16, 25]

 All slice operations return a new list containing the requested elements. This means that

the following slice returns a new (shallow) copy of the list:

>>> squares[:]

[1, 4, 9, 16, 25]

 Lists also support operations like concatenation:

>>> squares + [36, 49, 64, 81, 100]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

 Unlike strings, which are immutable, lists is a mutable type, i.e. it is possible to change

their content:

>>> cubes = [1, 8, 27, 65, 125] # something's wrong here

>>> 4 ** 3 # the cube of 4 is 64, not 65!

64

>>> cubes[3] = 64 # replace the wrong value

>>> cubes

[1, 8, 27, 64, 125]

https://docs.python.org/3/glossary.html#term-sequence
https://docs.python.org/3/glossary.html#term-immutable
https://docs.python.org/3/glossary.html#term-mutable

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 13/50

 You can also add new items at the end of the list, by using the append() method (we will

see more about methods later):

>>> cubes.append(216) # add the cube of 6

>>> cubes.append(7 ** 3) # and the cube of 7

>>> cubes

[1, 8, 27, 64, 125, 216, 343]

 Assignment to slices is also possible, and this can even change the size of the list or clear

it entirely:

>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']

>>> letters

['a', 'b', 'c', 'd', 'e', 'f', 'g']

>>> # replace some values

>>> letters[2:5] = ['C', 'D', 'E']

>>> letters

['a', 'b', 'C', 'D', 'E', 'f', 'g']

>>> # now remove them

>>> letters[2:5] = []

>>> letters

['a', 'b', 'f', 'g']

>>> # clear the list by replacing all the elements with an empty list

>>> letters[:] = []

>>> letters

[]

 The built-in function len() also applies to lists:

>>> letters = ['a', 'b', 'c', 'd']

>>> len(letters)

4

 It is possible to nest lists (create lists containing other lists), for example:

>>> a = ['a', 'b', 'c']

>>> n = [1, 2, 3]

>>> x = [a, n]

>>> x

https://docs.python.org/3/library/functions.html#len

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 14/50

[['a', 'b', 'c'], [1, 2, 3]]

>>> x[0]

['a', 'b', 'c']

>>> x[0][1]

'b'

 First Steps Towards Programming

 Of course, we can use Python for more complicated tasks than adding two and two

together. For instance, we can write an initial sub-sequence of the Fibonacci series as

follows:

>>> # Fibonacci series:

... # the sum of two elements defines the next

... a, b = 0, 1

>>> while a < 10:

... print(a)

... a, b = b, a+b

...

0

1

1

2

3

5

8

 This example introduces several new features.

 The first line contains a multiple assignment: the variables a and b simultaneously get the

new values 0 and 1. On the last line this is used again, demonstrating that the expressions

on the right-hand side are all evaluated first before any of the assignments take place. The

right-hand side expressions are evaluated from the left to the right.

 The while loop executes as long as the condition (here: a < 10) remains true. In Python,

like in C, any non-zero integer value is true; zero is false. The condition may also be a

string or list value, in fact any sequence; anything with a non-zero length is true, empty

sequences are false. The test used in the example is a simple comparison. The standard

comparison operators are written the same as in C: < (less than), > (greater

than), == (equal to), <= (less than or equal to), >= (greater than or equal to) and != (not

equal to).

https://en.wikipedia.org/wiki/Fibonacci_number
https://docs.python.org/3/reference/compound_stmts.html#while

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 15/50

 The body of the loop is indented: indentation is Python’s way of grouping statements. At

the interactive prompt, you have to type a tab or space(s) for each indented line. In

practice you will prepare more complicated input for Python with a text editor; all decent

text editors have an auto-indent facility. When a compound statement is entered

interactively, it must be followed by a blank line to indicate completion (since the parser

cannot guess when you have typed the last line). Note that each line within a basic block

must be indented by the same amount.

 The print() function writes the value of the argument(s) it is given. It differs from just

writing the expression you want to write (as we did earlier in the calculator examples) in

the way it handles multiple arguments, floating point quantities, and strings. Strings are

printed without quotes, and a space is inserted between items, so you can format things

nicely, like this:

>>> i = 256*256

>>> print('The value of i is', i)

The value of i is 65536

 The keyword argument end can be used to avoid the newline after the output, or end the

output with a different string:

>>> a, b = 0, 1

>>> while a < 1000:

... print(a, end=',')

... a, b = b, a+b

...

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,

PYTHON SHELL

 In this course we will be using Python 3.4, but you would be fine if you choose to use

Python 3.4 or above.

 In the last chapter, we have installed Python Interpreter. An Interpreter is a program

which translates your code into machine language and then executes it line by line.

 We can use Python Interpreter in two modes:

1. Interactive Mode.

https://docs.python.org/3/library/functions.html#print

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 16/50

2. Script Mode.

 In Interactive Mode, Python interpreter waits for you to enter command. When you type

the command, Python interpreter goes ahead and executes the command, then it waits

again for your next command.

 In Script mode, Python Interpreter runs a program from the source file.

 Interactive Mode

 Python interpreter in interactive mode is commonly known as Python Shell. To start the

Python Shell enter the following command in terminal or command prompt:

C:\Users\Q>python

Python 3.4.4 (v3.4.4:737efcadf5a6, Dec 20 2015, 20:20:57) [MSC v.1600 64 bit (AM

D64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

 If you system has Python 2 and Python 3 both, for example Ubuntu comes with Python 2

and 3 installed by default. To start the Python 3 Shell enter python3 instead of

just python.

q@vm:~$ python3

Python 3.5.2 (default, Nov 17 2016, 17:05:23)

[GCC 5.4.0 20160609] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

 What you are seeing is called Python Shell. >>> is known as prompt string, it simply

means that Python shell is ready to accept you commands. Python shell allows you type

Python code and see the result immediately. In technical jargon this is also known as

REPL short for Read-Eval-Print-Loop. Whenever you hear REPL think of an

environment which allows you quickly test code snippets and see results immediately,

just like a Calculator. In Python shell, enter the following calculations one by one and hit

enter to get the result.

>>>

>>> 88 + 4

92

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 17/50

>>>

>>> 45 * 4

180

>>>

>>> 17 / 3

5.666666666666667

>>>

>>> 78 - 42

36

>>>

 In Python, we use print() function to print something to the screen.

 In the Python shell type print("Big Python") and hit enter:

>>>

>>> print("Big Python")

Big Python

>>>

 We have just used two important programming constructs - A function and a string.

1. print() is a function - A function in programming is a chuck of code which does

something very specific. In our case, the print() function prints the argument (i.e "Big

Python") it is given to the console.

2. A string is just a sequence of string enclosed inside single or double quotes. For

example: "olleh", 'print it' are strings but 1 and 3 are not.

3. Don't worry, we are not expecting you understand these things at this point. In upcoming

lessons we will discuss these concepts in great detail.

4. Commands such as 17 / 3, print("Big Python") are know as statements in programming.

A statement is simply a instruction for the Python interpreter to execute. Statements are

of different types as we will see. A program usually consists of sequence of statements.

5. To quit the Python shell in Windows hit Ctrl+Z followed by the Enter Key, On Linux or

Mac hit Ctrl+D followed by Enter key.

 Script Mode

 Python Shell is great for testing small chunks of code but there is one problem -

the statements you enter in the Python shell are not saved anywhere.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 18/50

 In case, you want to execute same set of statements multiple times you would be

better off to save the entire code in a file. Then, use the Python interpreter in

script mode to execute the code from a file.

 Create a new directory named python101, you can create this directory anywhere

you want, just remember the location because we will use this directory to store

all our programs throughout this course. Create another directory

inside python101 named Chapter-03 to store the source files for this chapter.

 To create programs you can use any text editor, just make sure to save your file as

plain text. However, if you are desperately looking for recommendation go for

Sublime Text.

 Create a new file named hello.py inside Chapter-03 directory add the following

code to it:

 python101/Chapter-03/hello.py

print("Woods are lovely dark and deep")

print("but I have promises to keep")

print("and miles to go before I sleep")

 By convention, all Python programs have .py extension. The file hello.py is called

source code or source file or script file or module. To execute the program, open

terminal or command prompt and change your current working directory

to python101 using the cd command, then type the following command:

q@vm:~/python101/Chapter-03$ python3 hello.py

Woods are lovely dark and deep

but I have promises to keep

and miles to go before I sleep

q@vm:~/python101/Chapter-03$

 Note: On Windows use python hello.py to execute the the program.

 This command starts the Python interpreter in script mode and executes the

statements in the hello.py file.

 We know that in the Python Shell, if you type any expression and hit enter, the

Python interpreter evaluates the expression and displays the result.

>>>

>>> 12+8

20

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 19/50

>>> 75/2

37.5

>>> 100*2

200

>>> 100-24

76

>>>

 However, if you type these statements in a file and run the file, you will get no

output at all. Create a new file named no_output.py in the Chapter-

03 directory and add the following code to it.

 python101/Chapter-03/no_output.py

12+8

75/2

100*2

100-24

 To the run the file enter the following command.

q@vm:~/python101/Chapter-03$ python3 no_output.py

q@vm:~/python101/Chapter-03$

 As you can see, the program didn't output anything.

 To print values from Python script you must explicitly use

the print() function. Create a new file named no_output2.py with the

following code:

 python101/Chapter-03/no_output2.py

print(12+8)

print(75/2)

print(100*2)

print(100-24)

Output:
q@vm:~/python101/Chapter-03$ python3 no_output.py

20

37.5

200

76

q@vm:~/python101/Chapter-03$

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 20/50

 INDENTATION

Whitespace is important in Python. Actually, whitespace at the beginning of the line is

important. This is called indentation. Leading whitespace (spaces and tabs) at the beginning of

the logical line is used to determine the indentation level of the logical line, which in turn is used

to determine the grouping of statements.

This means that statements which go together must have the same indentation. Each such set of

statements is called a block. We will see examples of how blocks are important in later chapters.

One thing you should remember is how wrong indentation can give rise to errors. For example:

i = 5

 print 'Value is', i # Error! Notice a single space at the start of the line

print 'I repeat, the value is', i

When you run this, you get the following error:

 File "whitespace.py", line 4

 print 'Value is', i # Error! Notice a single space at the start of the line

 ^

SyntaxError: invalid syntax

Notice that there is a single space at the beginning of the second line. The error indicated by

Python tells us that the syntax of the program is invalid i.e. the program was not properly written.

What this means to you is that you cannot arbitrarily start new blocks of statements (except for

the main block which you have been using all along, of course). Cases where you can use new

blocks will be detailed in later chapters such as the control flow chapter.

ATOMS

 Atoms are the most basic elements of expressions. The simplest atoms are identifiers or

literals. Forms enclosed in parentheses, brackets or braces are also categorized

syntactically as atoms. The syntax for atoms is:

https://www.ibiblio.org/g2swap/byteofpython/read/control-flow.html

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 21/50

atom ::= identifier | literal | enclosure

enclosure ::= parenth_form | list_display | dict_display | set_display

 | generator_expression | yield_atom

IDENTIFIERS AND KEYWORDS

Python Keywords

 Keywords are the reserved words in Python.

 We cannot use a keyword as variable name, function name or any other identifier. They

are used to define the syntax and structure of the Python language.

 In Python, keywords are case sensitive.

 There are 33 keywords in Python 3.3. This number can vary slightly in course of time.

 All the keywords except True, False and None are in lowercase and they must be written

as it is. The list of all the keywords are given below.

Keywords in Python programming language

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass

break Except in raise

Python Identifiers

 Identifier is the name given to entities like class, functions, variables etc. in Python. It

helps differentiating one entity from another.

https://docs.python.org/3/reference/lexical_analysis.html#grammar-token-identifier
https://docs.python.org/3/reference/expressions.html#grammar-token-literal
https://docs.python.org/3/reference/expressions.html#grammar-token-enclosure
https://docs.python.org/3/reference/expressions.html#grammar-token-parenth_form
https://docs.python.org/3/reference/expressions.html#grammar-token-list_display
https://docs.python.org/3/reference/expressions.html#grammar-token-dict_display
https://docs.python.org/3/reference/expressions.html#grammar-token-set_display
https://docs.python.org/3/reference/expressions.html#grammar-token-generator_expression
https://docs.python.org/3/reference/expressions.html#grammar-token-yield_atom
https://www.programiz.com/python-programming/variables-datatypes
https://www.programiz.com/python-programming/function

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 22/50

 Rules for writing identifiers

1. Identifiers can be a combination of letters in lowercase (a to z) or uppercase (A to Z) or

digits (0 to 9) or an underscore (_). Names like myClass, var_1 and print_this_to_screen,

all are valid example.

2. An identifier cannot start with a digit. 1variable is invalid, but variable1 is perfectly fine.

3. Keywords cannot be used as identifiers.

>>> global = 1

 File "<interactive input>", line 1

 global = 1

 ^

SyntaxError: invalid syntax

4. We cannot use special symbols like !, @, #, $, % etc. in our identifier.

>>> a@ = 0

 File "<interactive input>", line 1

 a@ = 0

 ^

SyntaxError: invalid syntax

5. Identifier can be of any length.

LITERALS

 Python supports string and bytes literals and various numeric literals:

literal ::= stringliteral | bytesliteral

 | integer | floatnumber | imagnumber

https://docs.python.org/3/reference/lexical_analysis.html#grammar-token-stringliteral
https://docs.python.org/3/reference/lexical_analysis.html#grammar-token-bytesliteral
https://docs.python.org/3/reference/lexical_analysis.html#grammar-token-integer
https://docs.python.org/3/reference/lexical_analysis.html#grammar-token-floatnumber
https://docs.python.org/3/reference/lexical_analysis.html#grammar-token-imagnumber

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 23/50

 Evaluation of a literal yields an object of the given type (string, bytes, integer, floating

point number, complex number) with the given value. The value may be approximated in

the case of floating point and imaginary (complex) literals. See section Literals for

details.

 All literals correspond to immutable data types, and hence the object’s identity is less

important than its value. Multiple evaluations of literals with the same value (either the

same occurrence in the program text or a different occurrence) may obtain the same

object or a different object with the same value.

STRINGS

 A compound data type

 Strings are qualitatively different from the other two because they are made up of smaller

pieces— characters. Types that comprise smaller pieces are called compound data types.

Depending on what we are doing, we may want to treat a compound data type as a single

thing, or we may want to access its parts. This ambiguity is useful. The bracket operator

selects a single character from a string.

>>> fruit = "banana"

>>> letter = fruit[1]

>>> print letter

 The expression fruit[1] selects character number 1 from fruit. The variable letter refers to

the result. When we display letter, we get a surprise:

 a

 The first letter of "banana" is not a. Unless you are a computer scientist. In that case you

should think of the expression in brackets as an offset from the beginning of the string,

and the offset of the first letter is zero. So b is the 0th letter (“zero-eth”) of "banana", a is

the 1th letter (“one-eth”), and n is the 2th (“two-eth”) letter.

 To get the first letter of a string, you just put 0, or any expression with the value 0, in the

brackets:

>>> letter = fruit[0]

>>> print letter b

 The expression in brackets is called an index. An index specifies a member of an ordered

set, in this case the set of characters in the string. The index indicates which one you

want, hence the name. It can be any integer expression.

 Length

 The len function returns the number of characters in a string:

>>> fruit = "banana"

>>> len(fruit)

 6

 To get the last letter of a string, you might be tempted to try something like this:

 length = len(fruit)

https://docs.python.org/3/reference/lexical_analysis.html#literals

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 24/50

last = fruit[length] # ERROR!

 That won’t work. It causes the runtime error IndexError: string index out of range. The

reason is that there is no 6th letter in "banana". Since we started counting at zero, the six

letters are numbered 0 to 5. To get the last character, we have to subtract 1 from length:

length = len(fruit)

last = fruit[length-1]

 Alternatively, we can use negative indices, which count backward from the end of the

string. The expression fruit[-1] yields the last letter, fruit[-2] yields the second to last, and

so on.

 Traversal and the for loop

 A lot of computations involve processing a string one character at a time. Often they start

at the beginning, select each character in turn, do something to it, and continue until the

end. This pattern of processing is called a traversal. One way to encode a traversal is with

a while statement:

index = 0

while index < len(fruit):

letter = fruit[index]

print letter

 index = index + 1

 This loop traverses the string and displays each letter on a line by itself. The loop

condition is index < len(fruit), so when index is equal to the length of the string, the

condition is false, and the body of the loop is not executed. The last character accessed is

the one with the index len(fruit)-1, which is the last character in the string

 Using an index to traverse a set of values is so common that Python provides an

alternative, simpler syntax—the for loop:

 for char in fruit:

 print char

 Each time through the loop, the next character in the string is assigned to the variable

char. The loop continues until no characters are left.

 The following example shows how to use concatenation and a for loop to generate an

abecedarian series. “Abecedarian” refers to a series or list in which the elements appear

in alphabetical order. For example, in Robert McCloskey’s book Make Way for

Ducklings, the names of the ducklings are Jack, Kack, Lack, Mack, Nack, Ouack, Pack,

and Quack. This loop outputs these names in order:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 25/50

prefixes = "JKLMNOPQ"

suffix = "ack"

for letter in prefixes:

 print letter + suffix

The output of this program is:

Jack

Kack

Lack

Mack

Nack

Oack

Pack

Qack

 String slices

 A segment of a string is called a slice. Selecting a slice is similar to selecting a character:

>>> s = "Peter, Paul, and Mary"

>>> print s[0:5]

Peter

>>> print s[7:11]

Paul

>>> print s[17:21]

Mary

 The operator [n:m] returns the part of the string from the “n-eth” character to the “m-eth”

character, including the first but excluding the last. This behavior is counterintuitive; it

makes more sense if you imagine the indices pointing between the characters, as in the

following diagram:

 If you omit the first index (before the colon), the slice starts at the beginning of the string.

If you omit the second index, the slice goes to the end of the string. Thus:

 >>> fruit = "banana"

 >>> fruit[:3] ’ban’

>>> fruit[3:] ’ana’

 String comparison

 The comparison operators work on strings. To see if two strings are equal:

if word == "banana":

 print "Yes, we have no bananas!"

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 26/50

 Other comparison operations are useful for putting words in alphabetical order:

if word < "banana":

 print "Your word," + word + ", comes before banana."

 elif word > "banana": print "Your word," + word + ", comes after

banana."

else: print "Yes, we have no bananas!"

 You should be aware, though, that Python does not handle upper- and lowercase letters

the same way that people do. All the uppercase letters come before all the lowercase

letters. As a result: Your word, Zebra, comes before banana. A common way to address

this problem is to convert strings to a standard format, such as all lowercase, before

performing the comparison. A more difficult problem is making the program realize that

zebras are not fruit.

 Strings are immutable

 It is tempting to use the [] operator on the left side of an assignment, with the intention of

changing a character in a string.

 For example:

greeting = "Hello, world!"

greeting[0] = ’J’ # ERROR!

print greeting

 Instead of producing the output Jello, world!, this code produces the runtime error

TypeError: object doesn’t support item assignment.

 Strings are immutable, which means you can’t change an existing string. The best you

can do is create a new string that is a variation on the original:

greeting = "Hello, world!"

newGreeting = ’J’ + greeting[1:]

print newGreeting

 The solution here is to concatenate a new first letter onto a slice of greeting. This

operation has no effect on the original string.

 A find function

 What does the following function do?

def find(str, ch):

 index = 0

while index < len(str):

 if str[index] == ch:

 return index

 index = index + 1

return -1

 In a sense, find is the opposite of the [] operator. Instead of taking an index and

extracting the corresponding character, it takes a character and finds the index where that

character appears. If the character is not found, the function returns -1.

 This is the first example we have seen of a return statement inside a loop. If str[index] ==

ch, the function returns immediately, breaking out of the loop prematurely.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 27/50

 If the character doesn’t appear in the string, then the program exits the loop normally and

returns -1.

 This pattern of computation is sometimes called a “eureka” traversal because as soon as

we find what we are looking for, we can cry “Eureka!” and stop looking.

 Looping and counting

 The following program counts the number of times the letter a appears in a string:

fruit = "banana"

count = 0

for char in fruit:

if char == ’a’:

count = count + 1

 print count

 This program demonstrates another pattern of computation called a counter. The variable

count is initialized to 0 and then incremented each time an a is 7.9 The string module 77

found. (To increment is to increase by one; it is the opposite of decrement, and unrelated

to “excrement,” which is a noun.) When the loop exits, count contains the result—the

total number of a’s.

 The string module

 The string module contains useful functions that manipulate strings. As usual, we have to

import the module before we can use it:

>>> import string

 The string module includes a function named find that does the same thing as the

function we wrote. To call it we have to specify the name of the module and the name of

the function using dot notation.

 >>> fruit = "banana"

 >>> index = string.find(fruit, "a")

 >>> print index 1

 This example demonstrates one of the benefits of modules—they help avoid collisions

between the names of built-in functions and user-defined functions. By using dot notation

we can specify which version of find we want.

 Actually, string.find is more general than our version. First, it can find substrings, not just

characters:

>>> string.find("banana", "na")

2

 Also, it takes an additional argument that specifies the index it should start at:

 >>> string.find("banana", "na", 3)

4

 Or it can take two additional arguments that specify a range of indices: 78 Strings

>>> string.find("bob", "b", 1, 2)

-1

 In this example, the search fails because the letter b does not appear in the index range

from 1 to 2 (not including 2).

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 28/50

 Character classification

 It is often helpful to examine a character and test whether it is upper- or lowercase, or

whether it is a character or a digit. The string module provides several constants that are

useful for these purposes.

 The string string.lowercase contains all of the letters that the system considers to be

lowercase. Similarly, string.uppercase contains all of the uppercase letters. Try the

following and see what you get:

 >>> print string.lowercase

>>> print string.uppercase

>>> print string.digits

 We can use these constants and find to classify characters. For example, if

find(lowercase, ch) returns a value other than -1, then ch must be lowercase:

def isLower(ch):

return string.find(string.lowercase, ch) != -1

 Alternatively, we can take advantage of the in operator, which determines whether a

character appears in a string:

def isLower(ch):

 return ch in string.lowercase

 As yet another alternative, we can use the comparison operator:

def isLower(ch):

return ’a’ <= ch <= ’z’

 If ch is between a and z, it must be a lowercase letter.

 Another constant defined in the string module may surprise you when you print it

>>> print string.whitespace

 Whitespace characters move the cursor without printing anything. They create the white

space between visible characters (at least on white paper). The constant string.whitespace

contains all the whitespace characters, including space, tab (\t), and newline (\n).

 There are other useful functions in the string module, but this book isn’t intended to be a

reference manual. On the other hand, the Python Library Reference is.

OPERATORS IN PYTHON

 The various operators provided by Python.

 Operator: An operator is a symbol which specifies a specific action.

 Operand: An operand is a data item on which operator acts.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 29/50

 Some operators require two operands while others require only one.

Expression: An expression is nothing but a combination of operators, variables, constants and

function calls that results in a value. For example:

some valid expressions

1 + 8

(3 * 9) / 5

a * b + c * 3

a + b * math.pi

d + e * math.sqrt(441)

Let's start with Arithmetic Operators.

Arithmetic Operators #

 Arithmetic operators are commonly used to perform numeric calculations. Python has

following Arithmetic operators.

Operator Description Example

+ Addition operator 100 + 45 = 145

- Subtraction operator 500 - 65 = 435

* Multiplication operator 25 * 4 = 100

/ Float Division Operator 10 / 2 = 5.0

https://overiq.com/python/3.4/operators-in-python/#arithmetic-operators

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 30/50

Operator Description Example

// Integer Division Operator 10 / 2 = 5

** Exponentiation Operator 5 ** 3 = 125

% Remainder Operator 10 % 3 = 1

 We use +, -and * operators in our daily life, so they don't deserve any explanation.

However, the important thing to note is that + and - operators can be binary as well as

unary. A unary operator has only one operand. We can use - operator to negate any

positive number. For example: -5, in this case - operator is acting as a unary operator,

whereas in 100 - 40, - operator is acting as a binary operator. Similarly, we can use

unary +operator. For example, +4. As expression 4 and +4 are same, applying

unary + operator in an expression generally has no significance.

Float Division Operator (/) #

 The / operator performs a floating point division. It simply means that / returns a floating

point result. For example:

>>>

>>> 6/3

2.0

>>>

>>> 3.14/45

0.06977777777777779

>>>

>>>

>>> 45/2.5

18.0

>>>

>>>

>>> -5/2

-2.5

>>>

Integer Division Operator (//) #

 The // operator works similar to / operator, but instead of returning a float value it returns

an integer. For example:

https://overiq.com/python/3.4/operators-in-python/#float-division-operator
https://overiq.com/python/3.4/operators-in-python/#integer-division-operator

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 31/50

>>>

>>> 6//3

2

>>>

>>> 100//6

16

>>>

 Unlike / operator, when the result is negative then // operator rounds the result away from

zero to the nearest integer.

>>>

>>> -5//2

-3

>>>

>>> -5/2

-2.5

>>>

Exponentiation Operator (**) #

 We use ** operator to calculate a^b. For example:

>>>

>>> 21**2

441

>>>

>>> 5**2.2

34.493241536530384

>>>

Remainder Operator (%) #

 The % operator returns the remainder after after dividing left operand by the right

operand. For example:

>>>

>>> 5%2

1

>>>

https://overiq.com/python/3.4/operators-in-python/#exponentiation-operator
https://overiq.com/python/3.4/operators-in-python/#remainder-operator

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 32/50

 The remainder operator % is a very useful operator in programming. One common use

of % operator is to determine whether a number is even or not.

 A number is even if it is exactly divisible by 2. In other words, a number is even if when

divided by 2, leaves 0 as remainder. We will learn how to write such program in lesson

Operator Precedence and Associativity #

 Consider the following expression:

10 * 5 + 9

 What will be it's result ?

 If multiplication is performed before addition then the answer will be 59. On the other

hand, if addition is performed before multiplication then the answer will be 140. To solve

this dilemma, we use Operator Precedence.

 Operators in Python are grouped together and given a precedence level. The precedence

of operators is listed in the following table.

Operator Description Associativity

[v1, …], { v1, …}, { k1: v1,

…}, (…)

List/set/dict/generator creation or

comprehension, parenthesized expression left to right

seq [n], seq [n : m], func (

args…), obj.attr

Indexing, slicing, function call, attribute

reference left to right

** Exponentiation right to left

+x, -x, ~x Positive, negative, bitwise not left to right

https://overiq.com/python/3.4/operators-in-python/#operator-precedence-and-associativity

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 33/50

Operator Description Associativity

*, /, //, %

Multiplication, float division, integer division,

remainder left to right

+, - Addition, subtraction left to right

<<, >> Bitwise left, right shifts left to right

& Bitwise and left to right

| Bitwise or left to right

in, not in, is, is

not, <, <=, >, >=, !=, == Comparision, membership and identity tests left to right

not x Boolean NOT left to right

and Boolean AND left to right

or Boolean OR left to right

if-else Conditional expression left to right

lambda lambda expression left to right

 The operators in the upper rows has the highest precedence and it decreases as we move

towards the bottom of the table. Whenever we have an expression where operators

involved are of different precedence, the operator with a higher precedence is evaluated

first. So, in the expression 10 * 5 + 9 evaluation of * operator is performed first followed

by evaluation of + operator.

=> 10 * 5 + 9 (multiplication takes place first)

=> 50 + 9 (followed by addition)

=> 59 (Ans)

Associativity of Operators #

 In the precedence table operators in the same group have the same precedence, for

example, (*, /, //, %) have the same precedence. Now consider the following expression:

5 + 12 / 2 * 4

 From the precedence table we know that both / and * have higher precedence than +, but

the precedence of /and * is same, so which operator do you think will be evaluated

first / or * ?

https://overiq.com/python/3.4/operators-in-python/#associativity-of-operators

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 34/50

 To determine the order of evaluation when operator precedence is same we use

Operator Associativity. Operator Associativity defines the direction in which

operators of same precedence are evaluated, it can be either from left to right or

right to left. Operators within same group have same associativity. As you can see

in the table, the associativity of / and * is from left to right. So in the expression:

5 + 12 / 2 * 4

 The / operator will be evaluated first, followed by * operator. At last + operator is

evaluated.

=> 5 + 12 / 2 * 4 (/ operator is evaluated first)

=> 5 + 6 * 4 (then * operator is evaluated)

=> 5 + 24 (at last + operator is evaluated)

=> 29 (Ans)

 The following are two noteworthy points to remember about the precedence table.

1. Associativity of most operators in the same group is from left to right except

exponentiation operator (**). The associativity of exponentiation operator (**) is from

right to left.

2. We sometimes use parentheses i.e () to change the order of evaluation. For example:

2 + 10 * 4

In the above expression * will be performed first followed by +. We can easily change

operator precedence by wrapping parentheses around the expression or sub-expression

which we want to evaluate first. For example:

(2 + 10) * 4

As precedence of () operator is higher than that of * operator (see precedence table),

addition will be performed first followed by *.

Here are some expressions and order in which they are evaluated:

Example 1:
Expression: 10 * 3 + (10 % 2) ** 1

1st Step: 10 * 3 + 0 ** 1

2nd Step: 10 * 3 + 0

3rd Step: 30 + 0

4th Step: 30

Example 2:
Expression: 45 % 2 - 5 / 2 + (9 * 3 - 1)

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 35/50

1st Step: 45 % 2 - 5 / 2 + 26

2nd Step: 1 - 2.5 + 26

3rd Step: 24.5

Compound Assignment Operator #

 In programming it is very common to increment or decrement the value of a

variable and then reassign the value back to the same variable. For example:

x = 10

x = x + 5

 Initially value of x is 10. In the second expression, we have added 10 to the existing value

of x and then reassign the new value back to x. So now the value of x is 15.

 The second statement i.e x = x + 5 can be written in more succinctly manner using

Compound Assignment Operator as follows:

x += 5

 Here += is known as Compound Assignment Operator. The following table lists other

Compound Assignment operators available in Python.

Operator Example Equivalent Statement

+= x += 4 x = x + 4

-= x -= 4 x = x - 4

*= x *= 4 x = x * 4

/= x /= 4 x = x / 4

//= x //= 4 x = x // 4

%= x %= 4 x = x % 4

**= x **= 4 x = x ** 4

 Unlike other C based languages likes like Java, PHP, JavaScript; Python doesn't have

Increment operator (++) and decrement operator (--). In those languages, ++ and --

 operators are commonly used to increment and decrement the value of variable

by 1 respectively. For example, to increment/decrement the value of a variable by 1 in

JavaScript you would do something like this:

https://overiq.com/python/3.4/operators-in-python/#compound-assignment-operator

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 36/50

x = 10;

x++; // increment x by 1

console.log(x); // prints 11

x = 10;

x--; // decrement x by 1

console.log(x); // prints 9

 We can easily emulate this behavior using compound assignment operator as follows:

x = 10

x += 1

print(x) ## prints 11

x = 10

x -= 1

print(x) ## prints 9

Type Conversion #

 Upto this point, we haven't given much thought about the type of data we have been

using in expression in Python Shell as well as in our programs. When it comes to

performing calculation involving data of different types Python has following rules:

1. When both operands involved in an expression are int, then the result will be an int.

2. When both operand involved in an expression are float, then the result will be a float.

3. When one operand is of float type and other is of type int then the result will always be

a float value. In such cases, the Python interpreter automatically converts the int value

to float temporarily, then performs the calculation. This process is known as Type

Conversion.

Here are some examples:

>>>

>>> 45 * 3

135 # result is int because both operands are int

>>>

>>>

>>>

>>> 3.4 * 5.3

18.02 # result is float because both operands are float

>>>

>>>

https://overiq.com/python/3.4/operators-in-python/#type-conversion

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 37/50

>>>

>>> 88 * 4.3

378.4 # result is float because one operand is float

>>>

 In the last expression literal 88 is first converted to 88.0, and then the multiplication is

carried out.

 Sometimes, it is desirable to convert data from one type to a different type at our will. To

handle such situations Python provides us the following functions:

Function

Name Description Example

int()

It accepts a string or number and

returns a value of type int. int(2.7) returns 2, int("30") returns 30

float()

It accepts a string or number and

returns a value of type float float(42) returns 42.0, float("3.4")returns 3.4

str()

It accepts any value and returns a

value type str str(12) returns "12", str(3.4) returns "3.4"

 Here are some examples:

int() function #

>>>

>>> int(2.7) # convert 2.7 to int

2

>>>

>>> int("30") # convert "30" to int

30

>>>

 Note that when int() function converts a float number to int, it simply remove the digits

after the decimal point. If you want to round a number use the round() function.

>>>

>>> int(44.55)

44

>>> round(44.55)

45

https://overiq.com/python/3.4/operators-in-python/#int-function

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 38/50

>>>

float() function #

>>>

>>> float(42) # convert 42 to float

42.0

>>>

>>> float("3.4") # convert "3.4" to float

3.4

>>>

str() function #

>>>

>>> str(12) # convert 12 to str

'12'

>>>

>>> str(3.4) # convert 3.4 to str

'3.4'

>>>

Breaking Statements into Multiple Lines #

 All the statements we have written until now are limited to one line. What if your

statement becomes too long ?

 Typing long statements in one line is very hard to read on screen as well as on paper.

 Python allows us to break long expression into multiple lines using line continuation

symbol (\). The \ symbol tells the Python interpreter that the statement is continued on

the next line. For example:

>>>

>>> 1111100 + 45 - (88 / 43) + 783 \

... + 10 - 33 * 1000 + \

... 88 + 3772

1082795.953488372

>>>

 To expand a statement to multiple lines type the line continuation symbol (\) at the point

where you want to break the statement and hit enter.

https://overiq.com/python/3.4/operators-in-python/#float-function
https://overiq.com/python/3.4/operators-in-python/#str-function
https://overiq.com/python/3.4/operators-in-python/#breaking-statements-into-multiple-lines

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 39/50

 When Python Shell encounters a statement which expands to multiple lines, it changes

prompt string from >>>to When you are done typing the statement hit enter to see the

result.

 Here is another example which breaks the print() statement into multiple lines :

>>>

>>> print("first line\

... second line\

... third line")

first line second line third line

>>>

>>>

 The following example shows how to write multi-line statements in a Python script.

python101/Chapter-06/multiline_statements.py
result = 1111100 + 45 - (88 / 43) + 783 \

 + 10 - 33 * 1000 + \

 88 + 3772

print(result)

print("first line\

 second line\

 third line")

Output:
1082795.953488372

first line second line third line

bool Type #

 The bool data type represent two states i.e true or false. Python defines the values true

and false using the reserved keywords True and False respectively. A variable of

type bool can only contain one of these two values. For example:

>>>

>>> var1 = True

>>> var2 = False

>>>

>>> type(var1)

<class 'bool'> # type of var1 is bool

>>>

>>> type(var2)

<class 'bool'> # type of var2 is bool

>>>

>>>

>>> type(True)

https://overiq.com/python/3.4/operators-in-python/#bool-type

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 40/50

<class 'bool'> # type of True keyword is bool

>>>

>>> type(False)

<class 'bool'> # type of False keyword is bool

>>>

>>> var1

True

>>>

>>> var2

False

>>>

 An expression which evaluates to a bool value True or False is known as boolean

expression.

 We commonly use bool variables as flags. A flag is nothing but a variable which signals

some condition in the program. If flag variable is set to False then it means that the

condition is simply not true. On the other hand, if it is True then it means condition is

true.

 Internally, Python uses 1 and 0 to represent True and False respectively. We can verify

this fact by using int()function on True and False keywords as follows:

>>>

>>> int(True) # convert keyword True to int

1

>>>

>>> int(False) # convert keyword False to int

0

>>>

Truthy and Falsy Values #

 Truthy values: Values which are equivalent to bool value True is known as Truthy

values.

 Falsy values: Values which are equivalent to bool value False is known as Falsy values.

 In Python, the following values are considered as falsy.

1. None

2. False

3. Zero i.e 0, 0.0

4. Empty sequence, for example, '', [], ()

5. Empty dictionary i.e {}

 Note: Sequence and dictionary are discussed in later chapters.

 Everything else is considered as truthy . We can also test whether a value is truthy or

falsy by using the bool()function. If value a truthy then bool() function returns True,

otherwise it returns False. Here are some examples:

>>>

https://overiq.com/python/3.4/operators-in-python/#truthy-and-falsy-values

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 41/50

>>> bool("") # an empty string is falsy value

False

>>>

>>> bool(12) # int 12 is a truthy value

True

>>>

>>> bool(0) # int 0 is falsy a value

False

>>>

>>> bool([]) # an empty list is a falsy value

False

>>>

>>> bool(()) # an empty tuple is a falsy value

False

>>>

>>> bool(0.2) # float 0.2 is truthy a value

True

>>>

>>> bool("boolean") # string "boolean" is a truthy value

True

>>>

 The significance of truthy and falsy values will become much more clear in the upcoming

lessons.

Relational Operators #

 To compare values we use relational operators. Expression containing relational

operators are known as relational expressions. If expression is true then a bool

value True is returned and if the expression is false a bool value False is returned.

Relational operators are binary operators. The following table lists relational operators

available in Python.

Operator Description Example Return Value

< Smaller than 3 < 4 True

> Greater than 90 > 450 False

<=

Smaller than or equal

to 10 <= 11 True

>=

Greater than or equal

to 31 >= 40 False

!= Not equal to 100 != True

https://overiq.com/python/3.4/operators-in-python/#relational-operators

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 42/50

Operator Description Example Return Value

101

== Equal to 50==50 True

>>>

>>> 3 < 4 # Is 3 is smaller than 4 ? Yes

True

>>>

>>> 90 > 450 # Is 90 is greater than 450 ? No

False

>>>

>>> 10 <= 11 # Is 10 is smaller than or equal to 11 ? Yes

True

>>>

>>> 31 >= 40 # Is 31 is greater than or equal to 40 ? No

False

>>>

>>> 100 != 101 # Is 100 is not equal to 101 ? Yes

True

>>>

>>> 50 == 50 # Is 50 is equal to 50 ? Yes

True

>>>

 Beginners often confuse between == and = operators. Always remember = is an

assignment operator and is used to assign a value to the variable. On the other hand, == is

a equality operator and is used to test whether two values are equal or not.

Logical Operators #

 Logical operators are used to combine two or more boolean expressions and tests whether

they are true or false. Expressions containing logical operators are known as Logical

expressions. The following table lists logical operators available in Python.

Operator Description

and AND operator

or OR operator

not NOT operator

 The and and or are binary operators, while not is unary.

https://overiq.com/python/3.4/operators-in-python/#logical-operators

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 43/50

and Operator #

 The and operator returns a bool value True if both operands are true. Otherwise, it

returns False.

 Syntax: operand_1 and operand_2.

 The truth table for and operator is as follows:

operand_1 operand_2 Result

False False False

False True False

True False False

True True True

 Here are some examples:

Expression Intermediate Expression Result

(10>3) and (15>6) True and True True

(1>5) and (43==6) False and False False

(1==1) and (2!=2) True and False False

>>>

>>> (10>3) and (15>6) # both conditions are true so, the result is true

True

>>>

>>> (1>5) and (43==6) # both conditions are false so, the result is false

False

>>>

>>> (1==1) and (2!=2) # one condition is false(right operand) so, the result is false

False

>>>

 The precedence of relational operators (i.e >, >=, <, <=, == and !=) is greater than that

of and operator, so parentheses in the above expressions is not necessary, it is added here

just to make the code more readable. For example:

>>>

>>> (10>3) and (15>6)

True

>>>

>>> 10 > 3 and 15 > 6 # this expression is same as above

True

>>>

https://overiq.com/python/3.4/operators-in-python/#and-operator

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 44/50

 As you can see, the expression (10>3) and (15>6) is much more clearer than 10 > 3 and

15 > 6.

 In and operator, if the first operand is evaluated to False, then the second operand is not

evaluated at all. For example:

>>>

>>> (10>20) and (4==4)

False

>>>

 In this case, (10>20) is False, and so is the whole logical expression. Hence there is no

need to evaluate the expression (4==4).

or operator #

 The or operator returns False when both operands are False. Otherwise, it returns True.

It's syntax is:

 Syntax: operand_1 or operand_2

 The truth table for or operator is as follows:

operand_1 operand_2 Result

False False False

False True True

True False True

True True True

 Here are some examples:

Expression Intermediate Expression Result

(100<200) or (55<6) True or False True

(11>55) or (6==6) False or True True

(1>12) or (2==3) False or False False

(10<22) or (20>3) True or True True

>>>

>>> (100<200) or (55<6)

True

>>>

>>> (11>55) or (6==6)

True

>>>

>>> (1>12) or (2==3)

https://overiq.com/python/3.4/operators-in-python/#or-operator

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 45/50

False

>>>

>>> (10<22) or (20>3)

True

>>>

 In or operator, if the first operand is evaluated to True, then the second operand is not

evaluated at all. For example:

>>>

>>> (100>20) or (90<30)

True

>>>

 In this case, (100>20) is True, and so is the whole logical expression. Hence there is no

need to evaluate the expression (90<30).

 The precedence of or operator is less than that of and operator.

not Operator #

 The not operator negates the value of the expression. In other words, if the expression

is True, then not operator returns False and if it is False, it returns True. Unlike the other

two logical operators, the not is a unary operator. The precedence of not operator is

higher than that of and operator and or operator. Its syntax is:

 Syntax: not operand

 The truth table for not operator is as follows:

operand Result

True False

False True

 Here are some examples:

Expression Intermediate Expression Result

not (200==200) not True False

not (10<=5) not False True

>>>

>>> not (200==200)

False

>>>

>>> not (10<=5)

True

>>>

https://overiq.com/python/3.4/operators-in-python/#not-operator

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 46/50

Python Bitwise Operators
 Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60; and b

= 13; Now in binary format they will be as follows −

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

 There are following Bitwise operators supported by Python language

Operator Description Example

& Binary AND Operator copies a bit to the result if it exists in

both operands

(a & b)

(means

0000 1100)

| Binary OR It copies a bit if it exists in either operand. (a | b) = 61

(means

0011 1101)

^ Binary XOR It copies the bit if it is set in one operand but

not both.

(a ^ b) = 49

(means

0011 0001)

~ Binary Ones

Complement

It is unary and has the effect of 'flipping' bits.

(~a) = -61

(means

1100 0011

in 2's

complement

form due to

a signed

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 47/50

binary

number.

<< Binary Left

Shift

The left operands value is moved left by the

number of bits specified by the right operand.

a << 2 =

240 (means

1111 0000)

>> Binary Right

Shift

The left operands value is moved right by the

number of bits specified by the right operand.

a >> 2 = 15

(means

0000 1111)

Ternary Operator in Python

 Ternary operators also known as conditional expressions are operators that evaluate

something based on a condition being true or false. It was added to Python in version 2.5.

It simply allows to test a condition in a single line replacing the multiline if-else making

the code compact.

 Syntax :

[on_true] if [expression] else [on_false]

1. Simple Method to use ternary operator:

Program to demonstrate conditional operator

a, b = 10, 20

Copy value of a in min if a < b else copy b

min = a if a < b else b

print(min)

Output:
10

2. Direct Method by using tuples, Dictionary and lambda

Python program to demonstrate ternary operator

a, b = 10, 20

Use tuple for selecting an item

print((b, a) [a < b])

Use Dictionary for selecting an item

https://mail.python.org/pipermail/python-dev/2005-September/056846.html

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 48/50

print({True: a, False: b} [a < b])

lamda is more efficient than above two methods

because in lambda we are assure that

only one expression will be evaluated unlike in

tuple and Dictionary

print((lambda: b, lambda: a)[a < b]())

Run on IDE

Output:

10

10

10

3. Ternary operator can be written as nested if-else:

Python program to demonstrate nested ternary operator

a, b = 10, 20

print ("Both a and b are equal" if a == b else "a is greater than b"

 if a > b else "b is greater than a")

Run on IDE

4. Above approach can be written as:

Python program to demonstrate nested ternary operator

a, b = 10, 20

if a != b:

 if a > b:

 print("a is greater than b")

 else:

 print("b is greater than a")

else:

 print("Both a and b are equal")

Run on IDE

Output: b is greater than a

Increment and Decrement Operators in Python

 If you’re familiar with Python, you would have known Increment and Decrement

operators (both pre and post) are not allowed in it.

 Python is designed to be consistent and readable. One common error by a novice

programmer in languages with ++ and -- operators is mixing up the differences (both in

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 49/50

precedence and in return value) between pre and post increment/decrement operators.

Simple increment and decrement operators aren’t needed as much as in other languages.

 You don’t write things like :

for (int i = 0; i < 5; ++i)

In Python, instead we write it like

A Sample Python program to show loop (unlike many

other languages, it doesn't use ++)

for i in range(0, 5):

 print(i)

Run on IDE

Output:

0

1

2

3

4

We can almost always avoid use of ++ and --. For example, x++ can be written as x += 1 and x--

 can be written as x -= 1.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON
 COURSE CODE: 16CAU501B UNIT - IV BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 50/50

POSSIBLE QUESTIONS

UNIT – IV

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. What is Python?

2. Write a short note on Python Interpreter?

3. Define Identifiers

4. List some keywords in Python Programming

5. List the Operators in Python Programming

6. How to create a simple calculator using python?

PART – C (6 MARKS)

1. Explain the process of Python Interpreter

2. Explain how the Python is used as a calculator.

3. Write in detail (i) Identifier (ii) Keywords.

4. Explain the process of Strings and its Operations

5. Explain Arithmetic Operators with suitable Example.

6. Explain Logical Operators with suitable Example.

7. Explain Relational Operators with suitable Example.

8. Write in detail (i) Ternary Operatory (ii) Assignment Operator

9. Explain bitwise Operators with suitable Example.

10. Write in detail (i) Literals (ii) Increment/ Decrement Operators

Questions Opt1 Opt2 Opt3 Opt4 KeyIs Python case sensitive when dealing with

identifiers? yes no machine dependent

machine

independent yesWhat is the maximum possible length of an

identifier? 31 characters 63 characters 79 characters

Identifiers can be of

any length.

Identifiers can be of

any length.

Which of the following is an invalid

variable? my_string_1 1st_string __ foo 1st_string

Why are local variable names beginning

with an underscore discouraged?

they are used to

indicate a

private

variables of a

class

they confuse

the interpreter

they are used to

indicate global

variables

they slow down

execution

they are used to

indicate a private

variables of a class

Which of the following is not a keyword? eval assert nonlocal pass eval

 Which of the following is true for variable

names in Python?

unlimited

length

all private

members must

have leading

and trailing

underscores

underscore and

ampersand are the

only two special

characters allowed limited length unlimited length

Which of the following is an invalid

statement?

abc =

1,000,000

a b c = 1000

2000 3000

a,b,c = 1000, 2000,

3000 a_b_c = 1,000,000

a b c = 1000 2000

3000

Which of the following cannot be a

variable? __init__ in it on in

PART - A (Online Examination)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore – 641 021.

(For the Candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - IV : (Objective Type Multiple choice Questions each Question carries one Mark)

 PROGRAMMING IN PYTHON [16CAU501B]

Which is the correct operator for

power(xy)? X^y X**y X^^y X*y X**y

Which one of these is floor division? / // % ** //

What is the order of precedence in python?

i) Parentheses

ii) Exponential

iii) Multiplication

iv) Division

v) Addition

vi) Subtraction i,ii,iii,iv,v,vi ii,i,iii,iv,v,vi ii,i,iv,iii,v,vi i,ii,iii,iv,vi,v i,ii,iii,iv,v,vi

What is answer of this expression, 22 % 3

is? 7 1 0 5 1

Operators with the same precedence are

evaluated in which manner? Left to Right Right to Left Can‟t say Right Left to Right

Which one of the following have the same

precedence?

Addition and

Subtraction

Multiplication

and Division

Both Addition and

Subtraction AND

Multiplication and

Division

Addition and

Multiplication

Addition and

Subtraction

Which one of the following have the

highest precedence in the expression? Exponential Addition Multiplication Parentheses Parentheses

What is the result of the snippet of code

shown below if x=1? x<<2 8 1 2 4 4

The one‟s complement of 110010101 is: 001101010 110010101 1101011 110010100 001101010

Bitwise _________ gives 1 if either of the

bits is 1 and 0 when both of the bits are 1. OR AND XOR NOT XOR

Which of the following expressions can be

used to multiply a given number „a‟ by 4? a<<2 a<<4 a>>2 a>>4 a<<2

What arithmetic operators cannot be used

with strings ? + * – / –

What is the output when following code is

executed ? >>> str1 = 'hello'

>>> str2 = ','

>>> str3 = 'world'

>>> str1[-1:] olleh hello h o o

What is the output when following code is

executed ? >>>print r"\nhello"

a new line and

hello \nhello

the letter r and then

hello error \nhello

What is “Hello”.replace(“l”, “e”) Heeeo Heelo Heleo Hello Heeeo

To retrieve the character at index 3 from

string s=”Hello” what command do we

execute (multiple answers allowed) ? s[]. s.getitem(3) s.__getitem__(3) s.getItem(3) s.__getitem__(3)

What function do you use to read a string?

input(“Enter a

string”)

eval(input(“Ent

er a string”))

 enter(“Enter a

string”)

eval(enter(“Enter a

string”)) input(“Enter a string”)

What is the output of the following?

print("abc DEF".capitalize()) abc def ABC DEF Abc def Abc Def Abc def

What is the output of the following?

print("xyyzxyzxzxyy".count('yy')) 2 0 error xyz 2

What is the output of the following?

print("Hello {name1} and

{name2}".format(name1='foo',

name2='bin'))

Hello foo and

bin

Hello {name1}

and {name2} Error Hello and Hello foo and bin

What is the output of the following?

print('cd'.partition('cd')) („cd‟) (”) („cd‟, ”, ”) (”, „cd‟, ”) (”, „cd‟, ”)

What is the output of the following?

print('abef'.partition('cd')) („abef‟) („abef‟, „cd‟, ”) („abef‟, ”, ”) error („abef‟, ”, ”)

 What is the output of the following?

print('{0:.2}'.format(1/3)) 0.333333 0.33 0.333333:.2 error 0.33

What is the output of the following?

print('ab'.isalpha()) TRUE FALSE None error TRUE

What is the output of the following?

print('cd'.partition('cd')) („cd‟) (”) („cd‟, ”, ”) (”, „cd‟, ”) (”, „cd‟, ”)

What is the two‟s complement of -44? 1011011 11010100 11101011 10110011 11010100

What is the value of the expression: ~100? 101 -101 100 -100 -101

Any odd number on being AND-ed with

________ always gives 1. Hint: Any even

number on being AND-ed with this value

always gives 0. 10 2 1 0 1

What is the value of this expression: bin(10-

2)+bin(12^4) 0b10000 0b10001000 0b1000b1000 0b10000b1000 0b10000b1000

What is the output of the code show below

if a=10 and b =20? a=10

b=20

a=a^b

b=a^b

a=a^b

print(a,b) 10 20 10 10 20 10 20 20 20 10

Consider the expression given below. The

value of X is: X = 2+9*((3*12)-8)/10 30 30.8 28.4 27.2 27.2

Which of the following expressions

involves coercion when evaluated in

Python? 4.7 – 1.5 7.9 * 6.3 1.7 % 2 3.4 + 4.6 1.7 % 2

Which among the following list of

operators has the highest precedence? +, -,

**, %, /, <<, >>, | <<, >> ** | % **

Which of the following expressions is an

example of type conversion? 4.0 + float(3) 5.3 + 6.3 5.0 + 3 3 + 7 3 + 7

Which of the following expressions results

in an error? float(„10‟) int(„10‟) float(‟10.8‟) int(‟10.8‟) int(‟10.8‟)

What is the value of the expression:

4+2**5//10 3 7 77 0 7

What is the output of the following?

print("ab\tcd\tef".expandtabs()) ab cd ef abcdef ab\tcd\tef ab tcd ef ab cd ef

What is the output of the following?

print("ab\tcd\tef".expandtabs('+')) ab+cd+ef

ab++++++++cd

++++++++ef ab cd ef

TypeError, an

integer should be

passed as an

argument.

TypeError, an integer

should be passed as an

argument.

What is the output of the following?

print("Hello {} and {}".format('foo', 'bin'))

Hello foo and

bin Hello {} and {} Error Hello and Hello foo and bin

________is aspecial symbol that represents

a simple computation like addition,

multiplication, or string concatenation. operator operand expression evaluate operator

which one of the values on which an

operator operates? operator operand expression evaluate operand

_______ is the set of rules governing the

order in which expressions involving

multiple operators and operands are

evaluated. operator expression rules of precedence evaluate rules of precedence

________is a reserved word that is used by

the compiler to parse a program; you cannot

use keywords like if, def, and while as

variable names. keyword operand expression evaluate keyword

________ is to join two operands end-to-

end composition concatenate comment statement concatenate

________ is to simplify an expression by

performing the operations in order to yield a

single value. keyword operand expression evaluate evaluate

____________ is a combination of

variables, operators, and values that

represents a single result value. keyword operand expression evaluate expression

_________ is a part of a string specified by

a range of indices. index slice compound expression slice

_______ is a compound data types whose

elements can be assigned new values index slice mutable expression mutable

____________ is a variable or value used to

select a member of an ordered set, such as a

character from a string index slice compound expression index

_________ is to iterate through the

elements of a set, performing a similar

operation on each. index slice traverse expression traverse

What is the output of the following?

print('{:,}'.format('1112223334')) 1112223334 111,222,333,4 1112223334 Error Error

What is the output of the following?

print('1Rn@'.lower()) n 1rn@ rn r 1rn@

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 1/26

UNIT – V

SYLLABUS

Creating Python Programs: Input and Output Statements-Control statements (Branching,

Looping, Conditional Statement, Exit function, Difference between break, continue and pass.).

Defining Functions-Default arguments.

CREATING PYTHON PROGRAMS

 Python is considered an interpreted language because Python programs are executed by

an interpreter. There are two ways to use the interpreter: command line mode and script

mode. In command-line mode, you type Python programs and the interpreter prints the

result:

$ python

Python 2.4.1 (#1, Apr 29 2005, 00:28:56)

Type "help", "copyright", "credits" or "license" for more information.

>>> print 1 + 1

2

 The first line of this example is the command that starts the Python interpreter. The next

two lines are messages from the interpreter. The third line starts with >>>, which is the

prompt the interpreter uses to indicate that it is ready. We typed print 1 + 1, and the

interpreter replied 2. Alternatively, you can write a program in a file and use the

interpreter to execute the contents of the file. Such a file is called a script. For example,

we used a text editor to create a file named latoya.py with the following contents:

print 1 + 1

 By convention, files that contain Python programs have names that end with .py.

 To execute the program, we have to tell the interpreter the name of the script:

 $ python latoya.py 2

 In other development environments, the details of executing programs may differ. Also,

most programs are more interesting than this one.

INPUT AND OUTPUT STATEMENTS

 Python provides numerous built-in functions that are readily available to us at the Python

prompt.

https://www.programiz.com/python-programming/built-in-function

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 2/26

 Some of the functions like input() and print() are widely used for standard input and

output operations respectively. Let us see the output section first.

Python Output Using print() function

 We use the print() function to output data to the standard output device (screen).

 We can also output data to a file, but this will be discussed later. An example use is given

below.

print('This sentence is output to the screen')

Output: This sentence is output to the screen

a = 5

print('The value of a is', a)

Output: The value of a is 5

 In the second print() statement, we can notice that a space was added between

the stringand the value of variable a.This is by default, but we can change it.

 The actual syntax of the print() function is

print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

 Here, objects is the value(s) to be printed.

 The sep separator is used between the values. It defaults into a space character.

 After all values are printed, end is printed. It defaults into a new line.

 The file is the object where the values are printed and its default value

is sys.stdout(screen). Here is an example to illustrate this.

print(1,2,3,4)

Output: 1 2 3 4

print(1,2,3,4,sep='*')

Output: 1*2*3*4

print(1,2,3,4,sep='#',end='&')

Output: 1#2#3#4&

Output formatting

 Sometimes we would like to format our output to make it look attractive. This can be

done by using the str.format() method. This method is visible to any string object.

>>> x = 5; y = 10

>>> print('The value of x is {} and y is {}'.format(x,y))

https://www.programiz.com/python-programming/file-operation
https://www.programiz.com/python-programming/string

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 3/26

The value of x is 5 and y is 10

 Here the curly braces {} are used as placeholders. We can specify the order in which it is

printed by using numbers (tuple index).

print('I love {0} and {1}'.format('bread','butter'))

Output: I love bread and butter

print('I love {1} and {0}'.format('bread','butter'))

Output: I love butter and bread

 We can even use keyword arguments to format the string.

>>> print('Hello {name}, {greeting}'.format(greeting = 'Goodmorning', name

= 'John'))

Hello John, Goodmorning

 We can even format strings like the old sprintf() style used in C programming language.

We use the % operator to accomplish this.

>>> x = 12.3456789

>>> print('The value of x is %3.2f' %x)

The value of x is 12.35

>>> print('The value of x is %3.4f' %x)

The value of x is 12.3457

Python Input

 Up till now, our programs were static. The value of variables were defined or hard coded

into the source code.

 To allow flexibility we might want to take the input from the user. In Python, we have

the input() function to allow this. The syntax for input() is

input([prompt])

 where prompt is the string we wish to display on the screen. It is optional.

>>> num = input('Enter a number: ')

Enter a number: 10

>>> num

'10'

https://www.programiz.com/c-programming

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 4/26

 Here, we can see that the entered value 10 is a string, not a number. To convert this into a

number we can use int() or float() functions.

>>> int('10')

10

>>> float('10')

10.0

 This same operation can be performed using the eval() function. But it takes it further. It

can evaluate even expressions, provided the input is a string

>>> int('2+3')

Traceback (most recent call last):

 File "<string>", line 301, in runcode

 File "<interactive input>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '2+3'

>>> eval('2+3')

5

Python Import

 When our program grows bigger, it is a good idea to break it into different modules.

 A module is a file containing Python definitions and statements. Python modules have a

filename and end with the extension .py.

 Definitions inside a module can be imported to another module or the interactive

interpreter in Python. We use the import keyword to do this.

 For example, we can import the math module by typing in import math.

import math

print(math.pi)

 Now all the definitions inside math module are available in our scope. We can also

import some specific attributes and functions only, using the from keyword. For example:

>>> from math import pi

>>> pi

3.141592653589793

https://www.programiz.com/python-programming/modules

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 5/26

 While importing a module, Python looks at several places defined in sys.path. It is a list

of directory locations.

>>> import sys

>>> sys.path

['',

 'C:\\Python33\\Lib\\idlelib',

 'C:\\Windows\\system32\\python33.zip',

 'C:\\Python33\\DLLs',

 'C:\\Python33\\lib',

 'C:\\Python33',

 'C:\\Python33\\lib\\site-packages']

CONTROL STATEMENTS

 A program’s control flow is the order in which the program’s code executes. The control

flow of a Python program is regulated by conditional statements, loops, and function

calls.

Conditional / Decision Making

 Decision making is anticipation of conditions occurring while execution of the program

and specifying actions taken according to the conditions.

 Decision structures evaluate multiple expressions which produce TRUE or FALSE as

outcome. You need to determine which action to take and which statements to

execute if outcome is TRUE or FALSE otherwise.

 Following is the general form of a typical decision making structure found in most of

the programming languages −

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 6/26

 Python programming language assumes any non-zero and non-null values as TRUE,

and if it is either zero or null, then it is assumed as FALSE value.

 Python programming language provides following types of decision making

statements. Click the following links to check their detail.

Sr.No.

Statement & Description

1 if statements

An if statement consists of a boolean expression followed by one or more

statements.

2 if...else statements

An if statement can be followed by an optional else statement, which executes

when the boolean expression is FALSE.

3 nested if statements

You can use one if or else if statement inside another if or else ifstatement(s).

 Let us go through each decision making briefly −

Single Statement Suites

 If the suite of an if clause consists only of a single line, it may go on the same line as the

header statement.

 Here is an example of a one-line if clause −

#!/usr/bin/python

var = 100

https://www.tutorialspoint.com/python/python_if_statement.htm
https://www.tutorialspoint.com/python/python_if_else.htm
https://www.tutorialspoint.com/python/nested_if_statements_in_python.htm

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 7/26

if (var == 100) : print "Value of expression is 100"

print "Good bye!"

 When the above code is executed, it produces the following result −

Value of expression is 100

Good bye!

if-else statement

 It is also called a two-way selection statement, because it leads the program to make a

choice between two alternative courses of action.

 Here’s the syntax for the if statement:

if expression:

 statement(s)

elif expression:

 statement(s)

elif expression:

 statement(s)

...

else:

 statement(s)

 The elif and else clauses are optional. Note that unlike some languages, Python does not

have a switch statement, so you must use if, elif, and elsefor all conditional processing.

 Here’s a typical if statement:

if x < 0: print "x is negative"

elif x % 2: print "x is positive and odd"

else: print "x is even and non-negative"

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 8/26

 When there are multiple statements in a clause (i.e., the clause controls a block of

statements), the statements are placed on separate logical lines after the line containing

the clause’s keyword (known as the header line of the clause) and indented rightward

from the header line. The block terminates when the indentation returns to that of the

clause header (or further left from there). When there is just a single simple statement, as

here, it can follow the : on the same logical line as the header, but it can also be placed

on a separate logical line, immediately after the header line and indented rightward from

it. Many Python practitioners consider the separate-line style more readable:

if x < 0:

 print "x is negative"

elif x % 2:

 print "x is positive and odd"

else:

 print "x is even and non-negative"

 You can use any Python expression as the condition in an if or elif clause. When you use

an expression this way, you are using it in a Boolean context. In a Boolean context, any

value is taken as either true or false. As we discussed earlier, any non-zero number or

non-empty string, tuple, list, or dictionary evaluates as true. Zero (of any numeric

type), None, and empty strings, tuples, lists, and dictionaries evaluate as false. When you

want to test a value x in a Boolean context, use the following coding style:

if x:

 This is the clearest and most Pythonic form. Don’t use:

if x is True:

if x = = True:

if bool(x):

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 9/26

 There is a crucial difference between saying that an expression “returns True" (meaning

the expression returns the value 1 intended as a Boolean result) and saying that an

expression “evaluates as true” (meaning the expression returns any result that is true in a

Boolean context). When testing an expression, you care about the latter condition, not

the former.

 If the expression for the if clause evaluates as true, the statements following the if clause

execute, and the entire if statement ends. Otherwise, the expressions for any elif clauses

are evaluated in order. The statements following the first elif clause whose condition is

true, if any, are executed, and the entire if statement ends. Otherwise, if an else clause

exists, the statements following it are executed.

LOOPING

 In general, statements are executed sequentially: The first statement in a function is

executed first, followed by the second, and so on. There may be a situation when you

need to execute a block of code several number of times.

 Programming languages provide various control structures that allow for more

complicated execution paths.

 A loop statement allows us to execute a statement or group of statements multiple times.

The following diagram illustrates a loop statement −

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 10/26

 Python programming language provides following types of loops to handle looping

requirements.

Sr.No. Loop Type & Description

1 while loop

Repeats a statement or group of statements while a given condition is TRUE. It

tests the condition before executing the loop body.

2 for loop

Executes a sequence of statements multiple times and abbreviates the code that

manages the loop variable.

3 nested loops

You can use one or more loop inside any another while, for or do..while loop.

https://www.tutorialspoint.com/python/python_while_loop.htm
https://www.tutorialspoint.com/python/python_for_loop.htm
https://www.tutorialspoint.com/python/python_nested_loops.htm

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 11/26

The while Statement

 The while statement in Python supports repeated execution of a statement or block of

statements that is controlled by a conditional expression. Here’s the syntax for

the while statement:

while expression:

 statement(s)

 A while statement can also include an else clause and break and continuestatements, as

we’ll discuss shortly.

 Here’s a typical while statement:

count = 0

while x > 0:

 x = x // 2 # truncating division

 count += 1

print "The approximate log2 is", count

 First, expression, which is known as the loop condition, is evaluated. If the condition is

false, the while statement ends. If the loop condition is satisfied, the statement or

statements that comprise the loop body are executed. When the loop body finishes

executing, the loop condition is evaluated again, to see if another iteration should be

performed. This process continues until the loop condition is false, at which point

the while statement ends.

 The loop body should contain code that eventually makes the loop condition false, or the

loop will never end unless an exception is raised or the loop body executes

a break statement. A loop that is in a function’s body also ends if a return statement

executes in the loop body, as the whole function ends in this case.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 12/26

The for Statement

 The for statement in Python supports repeated execution of a statement or block of

statements that is controlled by an iterable expression. Here’s the syntax for

the for statement:

for target in iterable:

 statement(s)

 Note that the in keyword is part of the syntax of the for statement and is functionally

unrelated to the in operator used for membership testing. A forstatement can also include

an else clause and break and continuestatements, as we’ll discuss shortly.

 Here’s a typical for statement:

for letter in "ciao":

 print "give me a", letter, "..."

 iterable may be any Python expression suitable as an argument to built-in function iter,

which returns an iterator object (explained in detail in the next section). target is

normally an identifier that names the control variable of the loop; the for statement

successively rebinds this variable to each item of the iterator, in order. The statement or

statements that comprise the loopbody execute once for each item in iterable (unless the

loop ends because an exception is raised or a break or return statement is executed).

 A target with multiple identifiers is also allowed, as with an unpacking assignment. In

this case, the iterator’s items must then be sequences, each with the same length, equal to

the number of identifiers in the target. For example, when d is a dictionary, this is a

typical way to loop on the items in d:

for key, value in d.items():

 if not key or not value: del d[key] # keep only true keys and values

 The items method returns a list of key/value pairs, so we can use a for loop with two

identifiers in the target to unpack each item into key and value.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 13/26

 If the iterator has a mutable underlying object, that object must not be altered while

a for loop is in progress on it. For example, the previous example cannot

use iteritems instead of items. iteritems returns an iterator whose underlying object is d,

so therefore the loop body cannot mutate d (by deld[key]). items returns a list, though,

so d is not the underlying object of the iterator and the loop body can mutate d.

 The control variable may be rebound in the loop body, but is rebound again to the next

item in the iterator at the next iteration of the loop. The loop body does not execute at all

if the iterator yields no items. In this case, the control variable is not bound or rebound in

any way by the for statement. If the iterator yields at least one item, however, when the

loop statement terminates, the control variable remains bound to the last value to which

the loop statement has bound it. The following code is thus correct, as long as someseqis

not empty:

for x in someseq:

 process(x)

print "Last item processed was", x

Iterators

 An iterator is any object i such that you can call i .next() without any arguments. i .next(

) returns the next item of iterator i, or, when iterator ihas no more items, raises

a StopIteration exception. When you write a class (see Chapter 5), you can allow

instances of the class to be iterators by defining such a method next. Most iterators are

built by implicit or explicit calls to built-in function iter, covered in Chapter 8. Calling a

generator also returns an iterator, as we’ll discuss later in this chapter.

 The for statement implicitly calls iter to get an iterator. The following statement:

for x in c:

 statement(s)

 is equivalent to:

https://www.safaribooksonline.com/library/view/python-in-a/0596001886/ch05.html
https://www.safaribooksonline.com/library/view/python-in-a/0596001886/ch08.html

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 14/26

_temporary_iterator = iter(c)

while True:

 try: x = _temporary_iterator.next()

 except StopIteration: break

 statement(s)

 Thus, if iter(c) returns an iterator i such that i .next() never

raisesStopIteration (an infinite iterator), the loop for x in c: never terminates (unless the

statements in the loop body contain suitable break or return statements or propagate

exceptions). iter(c), in turn, calls special method c .__iter__() to obtain and return an

iterator on c. We’ll talk more about the special method __iter__ in Chapter 5.

 Iterators were first introduced in Python 2.2. In earlier versions, for x in S: required S to

be a sequence that was indexable with progressively larger indices 0, 1, ..., and raised

an IndexError when indexed with a too-large index. Thanks to iterators, the for statement

can now be used on a container that is not a sequence, such as a dictionary, as long as the

container is iterable (i.e., it defines an __iter__ special method so that function iter can

accept the container as the argument and return an iterator on the container). Built-in

functions that used to require a sequence argument now also accept any iterable.

range and xrange

 Looping over a sequence of integers is a common task, so Python provides built-in

functions range and xrange to generate and return integer sequences. The simplest, most

idiomatic way to loop n times in Python is:

for i in xrange(n):

https://www.safaribooksonline.com/library/view/python-in-a/0596001886/ch05.html

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 15/26

 statement(s)

 range(x) returns a list whose items are consecutive integers from 0(included) up

to x (excluded). range(x,y) returns a list whose items are consecutive integers

from x (included) up to y (excluded). The result is the empty list if x is greater than or

equal to y. range(x,y,step) returns a list of integers from x (included) up to y (excluded),

such that the difference between each two adjacent items in the list is step. If step is less

than 0, range counts down from x to y. range returns the empty list when x is greater than

or equal to y and step is greater than 0, or when x is less than or equal to y and step is

less than 0. If step equals 0, range raises an exception.

 While range returns a normal list object, usable for all purposes, xrangereturns a special-

purpose object, specifically intended to be used in iterations like the for statement shown

previously. xrange consumes less memory thanrange for this specific use. Leaving aside

memory consumption, you can use range wherever you could use xrange.

Loop Control Statements

 Loop control statements change execution from its normal sequence. When execution

leaves a scope, all automatic objects that were created in that scope are destroyed.

 Python supports the following control statements. Click the following links to check

their detail.

Sr.No. Control Statement & Description

1 break statement

Terminates the loop statement and transfers execution to the statement

immediately following the loop.

2 continue statement

Causes the loop to skip the remainder of its body and immediately retest its

condition prior to reiterating.

https://www.tutorialspoint.com/python/python_break_statement.htm
https://www.tutorialspoint.com/python/python_continue_statement.htm

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 16/26

3 pass statement

The pass statement in Python is used when a statement is required syntactically but

you do not want any command or code to execute.

 Loop control statements change execution from its normal sequence. When execution

leaves a scope, all automatic objects that were created in that scope are destroyed.

Python supports the following control statements.

The Continue statement

 The continue statement is used to tell Python to skip the rest of the statements in the

current loop block and to continue to the next iteration of the loop

Continue Statement

 It returns the control to the beginning of the loop.

Prints all letters except 'e' and 's'

for letter in 'geeksforgeeks':

 if letter == 'e' or letter == 's':

 continue

 print 'Current Letter :', letter

 var = 10

Output:

Current Letter : g

Current Letter : k

Current Letter : f

Current Letter : o

Current Letter : r

Current Letter : g

Current Letter : k

The break statement

 The break statement is used to break out of a loop statement i.e. stop the execution of a

looping statement, even if the loop condition has not become False or the sequence of

items has been completely iterated over.

https://www.tutorialspoint.com/python/python_pass_statement.htm

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 17/26

 An important note is that if you break out of a for or while loop, any corresponding

loop else block is not executed.

Break Statement

 It brings control out of the loop

for letter in 'geeksforgeeks':

 # break the loop as soon it sees 'e'

 # or 's'

 if letter == 'e' or letter == 's':

 break

print 'Current Letter :', letter

Output:

Current Letter : e

Pass Statement

 We use pass statement to write empty loops. Pass is also used for empty control

statement, function and classes.

An empty loop

for letter in 'geeksforgeeks':

 pass

print 'Last Letter :', letter

Output:

Last Letter : s

exit() function

 To stop code execution in Python you first need to import the sys object. After this

you can then call the exit() method to stop the program running. It is the most

reliable, cross-platform way of stopping code execution. Here is a simple example.

import sys

sys.exit()

 You can also pass a string to the exit() method to get Python to spit this out when the

script stops. This is probably the preferred way of doing things as you might otherwise

not realize where the script stopped. Obviously you wouldn't just stop the script running

arbitrarily, but you might want to prevent it from running if certain

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 18/26

conditions haven't been met. Here is another example that stops

execution if the length of an array is less than 2.

import sys

listofitems = []

Code here that does something with listofitems

if len(listofitems) < 2:

 sys.exit('listofitems not long enough')

FUNCTION

Introduction

 Functions are reusable pieces of programs. They allow you to give a name to a block of

statements and you can run that block using that name anywhere in your program and any

number of times. This is known as calling the function. We have already used many

built-in functions such as the len and range.

 Functions are defined using the def keyword. This is followed by an identifier name for

the function followed by a pair of parentheses which may enclose some names of

variables and the line ends with a colon. Next follows the block of statements that are

part of this function. An example will show that this is actually very simple:

DEFINING A FUNCTION

Example Defining a function

#!/usr/bin/python

Filename: function1.py

def sayHello():

 print 'Hello World!' # block belonging to the function

End of function

sayHello() # call the function

Output

$ python function1.py

Hello World!

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 19/26

How It Works

 We define a function called sayHello using the syntax as explained above. This function

takes no parameters and hence there are no variables declared in the parentheses.

Parameters to functions are just input to the function so that we can pass in different

values to it and get back corresponding results.

Function Parameters

 A function can take parameters which are just values you supply to the function so that

the function can do something utilising those values. These parameters are just like

variables except that the values of these variables are defined when we call the function

and are not assigned values within the function itself.

 Parameters are specified within the pair of parentheses in the function definition,

separated by commas. When we call the function, we supply the values in the same way.

Note the terminology used - the names given in the function definition are

called parameters whereas the values you supply in the function call are

called arguments.

Using Function Parameters

Example Using Function Parameters

#!/usr/bin/python

Filename: func_param.py

def printMax(a, b):

 if a > b:

 print a, 'is maximum'

 else:

 print b, 'is maximum'

printMax(3, 4) # directly give literal values

x = 5

y = 7

printMax(x, y) # give variables as arguments

Output

$ python func_param.py

4 is maximum

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 20/26

7 is maximum

How It Works

 Here, we define a function called printMax where we take two parameters called a and b.

We find out the greater number using a simple if..else statement and then print the bigger

number.

 In the first usage of printMax, we directly supply the numbers i.e. arguments. In the

second usage, we call the function using variables. printMax(x, y) causes value of

argument x to be assigned to parameter a and the value of argument y assigned to

parameter b. The printMax function works the same in both the cases.

Local Variables

 When you declare variables inside a function definition, they are not related in any way

to other variables with the same names used outside the function i.e. variable names

are local to the function. This is called the scope of the variable. All variables have the

scope of the block they are declared in starting from the point of definition of the name.

Using Local Variables

Example Using Local Variables

#!/usr/bin/python

Filename: func_local.py

def func(x):

 print 'x is', x

 x = 2

 print 'Changed local x to', x

x = 50

func(x)

print 'x is still', x

Output

$ python func_local.py

x is 50

Changed local x to 2

x is still 50

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 21/26

How It Works

 In the function, the first time that we use the value of the name x, Python uses the value

of the parameter declared in the function.

 Next, we assign the value 2 to x. The name x is local to our function. So, when we

change the value of x in the function, the x defined in the main block remains unaffected.

 In the last print statement, we confirm that the value of x in the main block is actually

unaffected.

Using the global statement

 If you want to assign a value to a name defined outside the function, then you have to tell

Python that the name is not local, but it is global. We do this using the global statement.

It is impossible to assign a value to a variable defined outside a function without

the global statement.

 You can use the values of such variables defined outside the function (assuming there is

no variable with the same name within the function). However, this is not encouraged and

should be avoided since it becomes unclear to the reader of the program as to where that

variable's definition is. Using the global statement makes it amply clear that the variable

is defined in an outer block.

Example Using the global statement

Filename: func_global.py

def func():

 global x

 print 'x is', x

 x = 2

 print 'Changed global x to', x

x = 50

func()

print 'Value of x is', x

Output

$ python func_global.py

x is 50

Changed global x to 2

Value of x is 2

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 22/26

How It Works

 The global statement is used to declare that x is a global variable - hence, when we assign

a value to x inside the function, that change is reflected when we use the value of x in the

main block.

 You can specify more than one global variable using the same global statement. For

example, global x, y, z.

DEFAULT ARGUMENT VALUES

 For some functions, you may want to make some of its parameters as optional and use

default values if the user does not want to provide values for such parameters. This is

done with the help of default argument values. You can specify default argument values

for parameters by following the parameter name in the function definition with the

assignment operator (=) followed by the default value.

 Note that the default argument value should be a constant. More precisely, the default

argument value should be immutable - this is explained in detail in later chapters. For

now, just remember this.

Using Default Argument Values

Example Using Default Argument Values

#!/usr/bin/python

Filename: func_default.py

def say(message, times = 1):

 print message * times

say('Hello')

say('World', 5)

Output

$ python func_default.py

Hello

WorldWorldWorldWorldWorld

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 23/26

How It Works

 The function named say is used to print a string as many times as want. If we don't supply

a value, then by default, the string is printed just once. We achieve this by specifying a

default argument value of 1to the parameter times.

 In the first usage of say, we supply only the string and it prints the string once. In the

second usage of say, we supply both the string and an argument 5 stating that we want

to say the string message 5 times.

Keyword Arguments

 If you have some functions with many parameters and you want to specify only some of

them, then you can give values for such parameters by naming them - this is

called keyword arguments - we use the name (keyword) instead of the position (which we

have been using all along) to specify the arguments to the function.

 There are two advantages - one, using the function is easier since we do not need to

worry about the order of the arguments. Two, we can give values to only those

parameters which we want, provided that the other parameters have default argument

values.

Using Keyword Arguments

Example Using Keyword Arguments

#!/usr/bin/python

Filename: func_key.py

def func(a, b=5, c=10):

 print 'a is', a, 'and b is', b, 'and c is', c

func(3, 7)

func(25, c=24)

func(c=50, a=100)

Output

$ python func_key.py

a is 3 and b is 7 and c is 10

a is 25 and b is 5 and c is 24

a is 100 and b is 5 and c is 50

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 24/26

How It Works

 The function named func has one parameter without default argument values, followed

by two parameters with default argument values.

 In the first usage, func(3, 7), the parameter a gets the value 3, the parameter b gets the

value 5 and c gets the default value of 10.

 In the second usage func(25, c=24), the variable a gets the value of 25 due to the position

of the argument. Then, the parameter c gets the value of 24 due to naming i.e. keyword

arguments. The variableb gets the default value of 5.

 In the third usage func(c=50, a=100), we use keyword arguments completely to specify

the values. Notice, that we are specifying value for parameter c before that for a even

though a is defined before cin the function definition.

The return statement

 The return statement is used to return from a function i.e. break out of the function. We

can optionally return a value from the function as well.

Using the literal statement

Example Using the literal statement

#!/usr/bin/python

Filename: func_return.py

def maximum(x, y):

 if x > y:

 return x

 else:

 return y

print maximum(2, 3)

Output

$ python func_return.py

3

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 25/26

How It Works

 The maximum function returns the maximum of the parameters, in this case the numbers

supplied to the function. It uses a simple if..else statement to find the greater value and

then returns that value.

 Note that a return statement without a value is equivalent to return None. None is a

special type in Python that represents nothingness. For example, it is used to indicate that

a variable has no value if it has a value of None.

 Every function implicitly contains a return None statement at the end unless you have

written your own return statement. You can see this by running print

someFunction() where the function someFunction does not use the return statement such

as:

def someFunction():

pass

 The pass statement is used in Python to indicate an empty block of statements.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BCA COURSE NAME: PROGRAMMING IN PYTHON

 COURSE CODE: 16CAU501B UNIT - V BATCH: 2016 – 2019

Prepared by Ms.U.PRATHIBHA, Asst Prof, Dept of CS, CA & IT, KAHE Page 26/26

POSSIBLE QUESTIONS

UNIT – V

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. Define Function

2. Which function is used to print the statement in python?

3. List the Looping statements

4. Write the Syntax of if statement

5. Which function is used to read the input from the user?

6. Write the Syntax of function

PART – C (6 MARKS)

1. Explain the process of Input and Output Statements.

2. Discuss in detail about Conditional / Decision Making Statement.

3. Explain how to create a function with suitable example

4. Explain Looping Statement with example

5. Write in detail (i) break (ii) continue.

6. Write a python program to multiply two matrices

7. Describe the Default arguments of function

8. Write in detail (i) pass (ii) exit().

9. Write a python program to find Armstrong number in an interval

10. Difference between break, and continue statement

Questions Opt1 Opt2 Opt3 Opt4 KeyWe use the ___________ function to output data to

the standard output device (screen). input() print() output() printf() print()Some of the functions like_____ and _______ are

widely used for standard input and output operations

 input() and

 printf()

output() and pri

nt() input() and print() input() and output()

 input() and pr

int()

In Python, ___________ is a group of related

statements that perform a specific task. function method data print function

___________ through which we pass values to a

function method data print parameter parameter

What is the output of the following? x = ['ab', 'cd']

for i in x:

 i.upper()

print(x) [„ab‟, „cd‟]. [„AB‟, „CD‟]. [None, None]. [„abv‟, „cd‟]. [„ab‟, „cd‟].

What is the output of the following? i = 1

while True:

 if i%2 == 0:

 break

 print(i)

 i += 2 1 1 2 1 2 3 4 5 6 … 1 3 5 7 9 11 …

 1 3 5 7 9 11

…

PART - A (Online Examination)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore – 641 021.

(For the Candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - V : (Objective Type Multiple choice Questions each Question carries one Mark)

 PROGRAMMING IN PYTHON [16CAU501B]

What is the output of the following? i = 0

while i < 5:

 print(i)

 i += 1

 if i == 3:

 break

else:

 print(0) 0 1 2 0 0 1 2 error 0 1 2 1 0 1 2

Which of the following is the use of function in

python?

Functions

are reusable

pieces of

programs

Functions don‟t

provide better

modularity for

your application

 you can‟t also

create your own

functions All of the mentioned

Functions are

reusable

pieces of

programs

Which keyword is use for function? Fun Define Def Function Def

What is the output of the below program? def

sayHello():

 print('Hello World!')

sayHello()

sayHello()

Hello

World!

Hello

World!

„Hello World!‟

„Hello World!‟

Hello

Hello

Hello

Hello W

Hello World!

Hello World!

Which of the following functions is a built-in

function in python? seed() sqrt() factorial() print() print()

What is the output of the expression: round(4.576) 4.5 5 4 4.6 5

The function pow(x,y,z) is evaluated as: (x**y)**z (x**y) / z (x**y) % z (x**y)*z (x**y) % z

What is the output of the expression?

round(4.5676,2)? 4.5 4.6 4.57 4.56 4.57

What is the output of the following function?

any([2>8, 4>2, 1>2]) Error TRUE FALSE 4>2 TRUE

What is the output of the function: all(3,0,4.2) Error TRUE FALSE 0 Error

What are the outcomes of the following functions?

chr(„97‟)

chr(97)

a

Error

„a‟

a

 Error

a

Error

Error

 Error

a

What is the output of the following function?

complex(1+2j) Error 1 2j 1+2j 1+2j

What is the output of the following? x = 123

for i in x:

 print(i) 1 2 3 123 error 1234 error

What is the output of the following? d = {0: 'a', 1:

'b', 2: 'c'}

for i in d:

 print(i) 0 1 2 a b c 0 a 1 b 2 c 01abc2 0 1 2

What is the output of the following? for i in

range(2.0):

 print(i) 0.0 1.0 0 1 error 0 1 00 error

What is the output of the following? for i in

range(int(2.0)):

 print(i) 0.0 1.0 0 1 error 0 1 00 0 1

____________ is a statement that executes a

function. It consists of the name of the function

followed by a list of arguments enclosed in

parentheses. function function call return value argument function call

________ is a value provided to a function when

the function is called. This value is assigned to the

corresponding parameter in the function. function function call return value argument argument

___________ is the result of a function. If a

function call is used as an expression, the return

value is the value of the expression. function function call return value argument return value

________ is an explicit statement that takes a value

of one type and computes a corresponding value of

another type.

type

conversion type coercion module dot notation

type

conversion

_________ is a type conversion that happens

automatically according to Python‟s coercion rules.

type

conversion type coercion module dot notation type coercion

_________ is a file that contains a collection of

related functions and classes.

type

conversion type coercion module dot notation module

________ is the syntax for calling a function in

another module, specifying the module name

followed by a dot (period) and the function name.

type

conversion type coercion module dot notation dot notation

_________ is a named sequence of statements that

performs some useful operation function function call function definition argument function

_____________ is a statement that creates a new

function, specifying its name, parameters, and the

statements it executes. function function call function definition argument

function

definition

_____________ is the order in which statements are

executed during a program run. function function call flow of execution parameter

flow of

execution

____________ is a name used inside a function to

refer to the value passed as an argument. function function call flow of execution parameter parameter

______________ is a variable defined inside a

function. variable local variable global variable parameter local variable

___________ is a list of the functions that are

executing, printed when a runtime error occurs. frame traceback parameter flow of execution traceback

_________ is a group of consecutive statements

with the same indentation. recursion nesting block body block

___________ is the block in a compound statement

that follows the header. recursion nesting block body body

__________ is one program structure within

another, such as a conditional statement inside a

branch of another conditional statement. recursion nesting block body nesting

__________ is the process of calling the function

that is currently executing recursion nesting block body recursion

____________ is a statement that consists of a

header and a body. The header ends with a colon (:).

flow of

execution

conditional

statement

compound

statemen statement

compound

statemen

_____________ is a statement that controls the flow

of execution depending on some condition.

flow of

execution

conditional

statement

compound

statemen statement

conditional

statement

____________ is a function that calls itself

recursively without ever reaching the base case.

Eventually, an infinite recursion causes a runtime

error. recursion

infinite

recursion block body

infinite

recursion

___________ is the boolean expression in a

conditional statement that determines which branch

is executed.

flow of

execution

conditional

statement

compound

statemen Condition Condition

What is the output of the following? x = 'abcd'

for i in x:

 print(i)

 x.upper() a B C D a b c d A B C D error a b c d

What is the output of the following? x = 'abcd'

for i in x:

 print(i.upper()) a b c d A B C D a B C D error A B C D

What is the output of the following? x = 'abcd'

for i in range(len(x)):

 print(i) a b c d 0 1 2 3 error 1 2 3 4 0 1 2 3

What is the output of the following? x = 'abcd'

for i in range(len(x)):

 x[i].upper()

print (x) abcd A B C D error a B C D abcd

What is the output of the following code? def

foo(k):

 k[0] = 1

q = [0]

foo(q)

print(q)y [0]. [1]. [1, 0]. [0, 1]. [1].

How are keyword arguments specified in the

function heading?

one star

followed by

a valid

identifier

one underscore

followed by a

valid identifier

two stars followed

by a valid

identifier

two underscores

followed by a valid

identifier

two stars

followed by a

valid identifier

How many keyword arguments can be passed to a

function in a single function call? zero one zero or more one or more zero or more

What is the output of the following code? def foo():

 return total + 1

total = 0

print(foo()) 0 1 error 0.1 1

What is the type of sys.argv? set list tuple string list

How are variable length arguments specified in the

function heading?

one star

followed by

a valid

identifier

one underscore

followed by a

valid identifier

two stars followed

by a valid

identifier

 two underscores

followed by a valid

identifier

one star

followed by a

valid identifier

How are default arguments specified in the function

heading?

 identifier

followed by

an equal to

sign and the

default

value

identifier

followed by the

default value

within

backticks (“)

identifier followed

by the default

value within

square brackets

([]) identifier

 identifier

followed by an

equal to sign

and the default

value

How are required arguments specified in the

function heading?

 identifier

followed by

an equal to

sign and the

default

value

identifier

followed by the

default value

within

backticks (“)

identifier followed

by the default

value within

square brackets

([]) identifier identifier

Which of the following functions accepts only

integers as arguments? ord() min() chr() any() chr()

Which of the following functions will not result in

an error when no arguments are passed to it? min() divmod() all() float() float()

Which of the following functions does not throw an

error? ord() ord(„ „) ord(”) ord(“”) ord(„ „)

What is the output of the function: len(["hello",2, 4,

6]) 4 3 Error 6 4

Suppose there is a list such that: l=[2,3,4]. If we

want to print this list in reverse order, which of the

following methods should be used? reverse(l) list(reverse[(l)]) reversed(l) list(reversed(l))

list(reversed(l)

)

Register Number: ____________
[16CAU501B]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)
Coimbatore-641021.

(For the candidates admitted from 2016 onwards)
COMPUTER APPLICATIONS

FIRST INTERNAL EXAMINATION- JULY 2018
Fifth Semester

PROGRAMMING IN PYTHON
Date & Session: 13.07.2018 & FN Duration : 2 Hours
Class: III BCA Maximum : 50 Marks

PART-A (20 X 1 = 20 Marks)

Answer all the Questions

1. ________ is the process of formulating a problem, finding a solution, and expressing the
solution.
a. Problem solving b. Recover c. Format d. Retrieve

2. ________programming language is designedto be easy for humans to read and write.
a. low level language b. high level language c. machine language d. assembly language

3. A programming language that is designed to be easy for a computer to execute; also
called
a. low level language b. high level language c. machine language d. assembly

language
4. ________ is designed to be easy for humans to read and write.

a machine language b. assembly language c. Both a& bd. high level language
5. ________ is to execute a program in a high-level language by translating it one line at a

time.
a. Compile b. Interpret c. Portability d. assembly

6. ________ is to translate a program written in a high-level language into a lowlevel
language all at once, in preparation for later execution.
a. Compile b. Interpret c. Portability d. assembly

7. ________ Program in a high-level language before being compiled.
a. object code b. source code c. Executable d. script

8. ________ is the output of the compiler after it translates the program.
a. object code b. source code c. Executable d. script

9. ________ is a set of instructions that specifies a computation.
a. Algorithm b. Program c. Object d. Source

10. ________ is the structure of a program.
a. Algorithm b. Program c. Syntax d. Source

11. ________ is an error in a program that makes it impossible to parse (and therefore
impossible to interpret).
a. Syntax error b. runtime error c. Exception d. Semantic error

12. ________ is the meaning of a program.
a. Algorithm b. Program c. Syntax d. Semantics

13. ________ is an error in a program that makes it do something other than what the
programmer intended.
a. Syntax error b. runtime error c. Exception d. Semantic error

14. Python was designed by ____________________
a. John Chamber b. Robert Gentleman c. Guido van Rossum d. Ritchie

15. Which of the following data types is not supported in python?
a. Number b. String c. List d. Slice

16. ________________ are formal languages that havebeen designed to express
computations
a. Programming languages b. Natural Languages
c. Script Languages d. Machine Languages

17. ________ are languages that are designed by people for specific applications.
a. Programming languages b. Natural Languages
c. Script Languages d. Machine Languages

18. ________ are the languages that people speak, such as English,Spanish, and French..
a. Programming languages b. Natural Languages
c. Script Languages d. Machine Languages

19. A ______ is a name that refers to a value.
a. variable b. datatype c. Keyword d. Syntax

20. Python is an __________language.
a. Logical b. Interpreted c. Procedural d. Structural

Part –B (3 x 2 = 6 Marks)
Answer all the Questions

21. What is a Debugging?
22. List the types of errors
23. Define Algorithm

Part –C (3 x 8 = 24 Marks)
Answer all the Questions

24. a. Explain the types of Errors in Programming
(OR)

 b. Explain the Concept of Problem Solving
25. a. Discussabout Python Programming Language

(OR)
 b. Discuss in detail about the Algorithm
26. a. Write a short note on Decision table

(OR)
 b. Discuss about Flowchart with an example

https://www.thoughtco.com/definition-of-interpreter-958298

Register Number: ____________

[16CAU501B]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

Coimbatore-641021.

(For the candidates admitted from 2016 onwards)

COMPUTER APPLICATIONS

FIRST INTERNAL EXAMINATION- JULY 2018

Fifth Semester

PROGRAMMING IN PYTHON

Date & Session: 13.07.2018 & FN Duration : 2 Hours

Class: III BCA Maximum : 50 Marks

PART-A (20 X 1 = 20 Marks)

Answer all the Questions

1. ________ is the process of formulating a problem, finding a solution, and expressing the

solution.

a. Problem solving b. Recover c. Format d. Retrieve

2. ________programming language is designedto be easy for humans to read and write.

a. low level language b. high level language c. machine language d. assembly language

3. A programming language that is designed to be easy for a computer to execute; also

called

a. low level language b. high level language c. machine language d. assembly

language

4. ________ is designed to be easy for humans to read and write.

a. Machine language b. assembly language c. Both a& b d. high level language

5. ________ is to execute a program in a high-level language by translating it one line at a

time.

a. Compile b. Interpret c. Portability d. assembly

6. ________ is to translate a program written in a high-level language into a low level

language all at once, in preparation for later execution.

a. Compile b. Interpret c. Portability d. assembly

7. ________ Program in a high-level language before being compiled.

a. object code b. source code c. Executable d. script

8. ________ is the output of the compiler after it translates the program.

a. object code b. source code c. Executable d. script

9. ________ is a set of instructions that specifies a computation.

a. Algorithm b. Program c. Object d. Source

10. ________ is the structure of a program.

a. Algorithm b. Program c. Syntax d. Source

11. ________ is an error in a program that makes it impossible to parse (and therefore

impossible to interpret).

a. Syntax error b. runtime error c. Exception d. Semantic error

12. ________ is the meaning of a program.

a. Algorithm b. Program c. Syntax d. Semantics

13. ________ is an error in a program that makes it do something other than what the

programmer intended.

a. Syntax error b. runtime error c. Exception d. Semantic error

14. Python was designed by ____________________

a. John Chamber b. Robert Gentleman c. Guido van Rossum d. Ritchie

15. Which of the following data types is not supported in python?

a. Number b. String c. List d. Slice

16. ________ are formal languages that have been designed to express computations.

a. Programming Languages b. Natural Languages

c. Script Languages d. Machine Languages

17. ________ are languages that are designed by people for specific applications

a. Programming Languages b. Natural Languages

c. Script Languages d. Machine Languages

18. ________ are the languages that people speak, such as English, Spanish, and French.

a. Programming Languages b. Natural Languages

c. Script Languages d. Machine Languages

19. A ________ is a name that refers to a value.

a. variable b. data type c. Keyword d. Syntax

20. Python is an ________________ language.

a. Logical b. Interpreted c. Procedural d. Structural

Part –B (3 x 2 = 6 Marks)

Answer all the Questions

21. What is a Debugging?

Answer:

Programming is a complex process, and because it is done by human beings, it often

leads to errors. For whimsical reasons, programming errors are called bugs and the

process of tracking them down and correcting them is called debugging.

22. List the types of errors

Answer:

Three kinds of errors can occur in a program:

 Syntax errors

 Runtime errors

 Semantic errors

23. Define Algorithm

Answer:

Algorithm is a step-by-step procedure, which defines a set of instructions to be executed

in a certain order to get the desired output. Algorithms are generally created independent

of underlying languages, i.e. an algorithm can be implemented in more than one

programming language.

Part –C (3 x 10 = 30 Marks)

Answer all the Questions

24. a. Explain the types of Errors in Programming

Answer:

Three kinds of errors can occur in a program:

 Syntax errors

 Runtime errors

 Semantic errors

Syntax errors:

 Python can only execute a program if the program is syntactically correct;

otherwise, the process fails and returns an error message. Syntax refers to the

structure of a program and the rules about that structure. For example, in English,

a sentence must begin with a capital letter and end with a period. This sentence

contains a syntax error. So does this one for most readers, a few syntax errors are

not a significant problem, which is why we can read the poetry of e. e. cummings

without spewing error messages. Python is not so forgiving. If there is a single

syntax error anywhere in your program, Python will print an error message and

quit, and you will not be able to run your program. During the first few weeks of

your programming career, you will probably spend a lot of time tracking down

syntax errors. As you gain experience, though, you will make fewer errors and

find them faster.

 Here are some ways to avoid the most common syntax errors:

o 1. Make sure you are not using a Python keyword for a variable name.

o 2. Check that you have a colon at the end of the header of every compound

statement, including for, while, if, and def statements.

o 3. Check that indentation is consistent. You may indent with either spaces

or tabs but it’s best not to mix them. Each level should be nested the same

amount.

o 4. Make sure that any strings in the code have matching quotation marks.

o 5. If you have multiline strings with triple quotes (single or double), make

sure you have terminated the string properly. An unterminated string may

cause an invalid token error at the end of your program, or it may treat the

following part of the program as a string until it comes to the next string.

In the second case, it might not produce an error message at all!

o 6. An unclosed bracket—(, {, or [—makes Python continue with the next

line as part of the current statement. Generally, an error occurs almost

immediately in the next line.

o 7. Check for the classic = instead of == inside a conditional. If nothing

works, move on to the next section...

Runtime errors:

 The second type of error is a runtime error, so called because the error does not

appear until you run the program. These errors are also called exceptions because

they usually indicate that something exceptional (and bad) has happened. Runtime

errors are rare in the simple programs you will see in the first few chapters, so it

might be a while before you encounter one.

 My program does absolutely nothing.

o This problem is most common when your file consists of functions and

classes but does not actually invoke anything to start execution. This may

be intentional if you only plan to import this module to supply classes and

functions. If it is not intentional, make sure that you are invoking a

function to start execution, or execute one from the interactive prompt.

Also see the ―Flow of Execution‖ section below.

Semantic errors:

 The third type of error is the semantic error. If there is a semantic error in your

program, it will run successfully, in the sense that the computer will not generate

any error messages, but it will not do the right thing. It will do something else.

Specifically, it will do what you told it to do. The problem is that the program you

wrote is not the program you wanted to write. The meaning of the program (its

semantics) is wrong. Identifying semantic errors can be tricky because it requires

you to work backward by looking at the output of the program and trying to figure

out what it is doing.

 Try them out by writing simple test cases and checking the results.

o In order to program, you need to have a mental model of how programs

work. If you write a program that doesn’t do what you expect, very often

the problem is not in the program; it’s in your mental model.

o The best way to correct your mental model is to break the program into its

components (usually the functions and methods) and test each component

independently. Once you find the discrepancy between your model and

reality, you can solve the problem.

o Of course, you should be building and testing components as you develop

the program. If you encounter a problem, there should be only a small

amount of new code that is not known to be correct.

(OR)

 b. Explain the Concept of Problem Solving

Answer:

CONCEPT OF PROBLEM SOLVING

 Problem solving means the ability to formulate problems, think creatively about

solutions, and express a solution clearly and accurately. As it turns out, the process of

learning to program is an excellent opportunity to practice problem solving skills.

PROBLEM DEFINITION

 The problem is 'I want a program which creates a backup of all my important files'.

 Although, this is a simple problem, there is not enough information for us to get started

with the solution. A little more analysis is required. For example, how do we specify

which files are to be backed up? Where is the backup stored? How are they stored in the

backup?

 After analyzing the problem properly, we design our program. We make a list of things

about how our program should work. In this case, I have created the following list on

how I want it to work. If you do the design, you may not come up with the same kind of

problem - every person has their own way of doing things, this is ok.

1. The files and directories to be backed up are specified in a list.

2. The backup must be stored in a main backup directory.

3. The files are backed up into a zip file.

4. The name of the zip archive is the current date and time.

5. We use the standard zip command available by default in any standard

Linux/Unix distribution. Windows users can use the Info-Zip program. Note that

you can use any archiving command you want as long as it has a command line

interface so that we can pass arguments to it from our script.

THE SOLUTION

 As the design of our program is now stable, we can write the code which is

an implementation of our solution.

FIRST VERSION

EXAMPLE: 10.1. A BACKUP SCRIPT - THE FIRST VERSION

#!/usr/bin/python

Filename: backup_ver1.py

import os

import time

1. The files and directories to be backed up are specified in a list.

source = ['/home/swaroop/byte', '/home/swaroop/bin']

If you are using Windows, use source = [r'C:\Documents', r'D:\Work'] or

something like that

2. The backup must be stored in a main backup directory

target_dir = '/mnt/e/backup/' # Remember to change this to what you will be using

3. The files are backed up into a zip file.

4. The name of the zip archive is the current date and time

target = target_dir + time.strftime('%Y%m%d%H%M%S') + '.zip'

5. We use the zip command (in Unix/Linux) to put the files in a zip archive

zip_command = "zip -qr '%s' %s" % (target, ' '.join(source))

Run the backup

if os.system(zip_command) == 0:

 print 'Successful backup to', target

else:

 print 'Backup FAILED'

OUTPUT

$ python backup_ver1.py

Successful backup to /mnt/e/backup/20041208073244.zip

 Now, we are in the testing phase where we test that our program works properly. If it

doesn't behave as expected, then we have to debug our program i.e. remove

the bugs (errors) from the program.

How It Works

 You will notice how we have converted our design into code in a step-by-step manner.

 We make use of the os and time modules and so we import them. Then, we specify the

files and directories to be backed up in the source list. The target directory is where store

all the backup files and this is specified in the target_dir variable. The name of the zip

archive that we are going to create is the current date and time which we fetch using

the time.strftime() function. It will also have the .zipextension and will be stored in

the target_dir directory.

 The time.strftime() function takes a specification such as the one we have used in the

above program. The %Y specification will be replaced by the year without the cetury.

The %m specification will be replaced by the month as a decimal number

between 01 and 12 and so on. The complete list of such specifications can be found in the

[Python Reference Manual] that comes with your Python distribution. Notice that this is

similar to (but not same as) the specification used in print statement (using

the % followed by tuple).

 We create the name of the target zip file using the addition operator

which concatenates the strings i.e. it joins the two strings together and returns a new one.

Then, we create a string zip_command which contains the command that we are going to

execute. You can check if this command works by running it on the shell (Linux terminal

or DOS prompt).

 The zip command that we are using has some options and parameters passed. The -

q option is used to indicate that the zip command should work quietly. The -r option

specifies that the zip command should work recursively for directories i.e. it should

include subdirectories and files within the subdirectories as well. The two options are

combined and specified in a shorter way as -qr. The options are followed by the name of

the zip archive to create followed by the list of files and directories to backup. We

convert the source list into a string using the join method of strings which we have

already seen how to use.

 Then, we finally run the command using the os.system function which runs the command

as if it was run from the system i.e. in the shell - it returns 0 if the command was

successfully, else it returns an error number.

 Depending on the outcome of the command, we print the appropriate message that the

backup has failed or succeeded and that's it, we have created a script to take a backup of

our important files!

Note to Windows Users

You can set the source list and target directory to any file and directory names but you have to be

a little careful in Windows. The problem is that Windows uses the backslash (\) as the directory

separator character but Python uses backslashes to represent escape sequences!

So, you have to represent a backslash itself using an escape sequence or you have to use raw

strings. For example, use 'C:\\Documents' or r'C:\Documents' but do not use'C:\Documents' - you

are using an unknown escape sequence \D !

 Now that we have a working backup script, we can use it whenever we want to take a

backup of the files. Linux/Unix users are advised to use the executable method as

discussed earlier so that they can run the backup script anytime anywhere. This is called

the operation phase or the deployment phase of the software.

 The above program works properly, but (usually) first programs do not work exactly as

you expect. For example, there might be problems if you have not designed the program

properly or if you have made a mistake in typing the code, etc. Appropriately, you will

have to go back to the design phase or you will have to debug your program

25. a. Discuss about Python programming Language

Answer:

 The Python programming Language

 The programming language you will be learning is Python. Python is an example of a

high-level language; other high-level languages you might have heard of are C, C++,

Perl, and Java.

 As you might infer from the name ―high-level language,‖ there are also lowlevel

languages, sometimes referred to as ―machine languages‖ or ―assembly 2 The way of the

program languages.‖ Loosely speaking, computers can only execute programs written in

low-level languages. Thus, programs written in a high-level language have to be

processed before they can run. This extra processing takes some time, which is a small

disadvantage of high-level languages.

 But the advantages are enormous. First, it is much easier to program in a high-level

language. Programs written in a high-level language take less time to write, they are

shorter and easier to read, and they are more likely to be correct. Second, high-level

languages are portable, meaning that they can run on different kinds of computers with

few or no modifications. Low-level programs can run on only one kind of computer and

have to be rewritten to run on another.

 Due to these advantages, almost all programs are written in high-level languages. Low-

level languages are used only for a few specialized applications. Two kinds of programs

process high-level languages into low-level languages: interpreters and compilers. An

interpreter reads a high-level program and executes it, meaning that it does what the

program says. It processes the program a little at a time, alternately reading lines and

performing computations.

https://www.ibiblio.org/g2swap/byteofpython/read/executable-python-programs.html

 A compiler reads the program and translates it completely before the program starts

running. In this case, the high-level program is called the source code, and the translated

program is called the object code or the executable. Once a program is compiled, you can

execute it repeatedly without further translation.

 Python is considered an interpreted language because Python programs are executed by

an interpreter. There are two ways to use the interpreter: command line mode and script

mode. In command-line mode, you type Python programs and the interpreter prints the

result:

$ python

Python 2.4.1 (#1, Apr 29 2005, 00:28:56)

Type "help", "copyright", "credits" or "license" for more information.

>>> print 1 + 1

2

 The first line of this example is the command that starts the Python interpreter. The next

two lines are messages from the interpreter. The third line starts with >>>, which is the

prompt the interpreter uses to indicate that it is ready. We typed print 1 + 1, and the

interpreter replied 2. Alternatively, you can write a program in a file and use the

interpreter to execute the contents of the file. Such a file is called a script. For example,

we used a text editor to create a file named latoya.py with the following contents:

print 1 + 1

 By convention, files that contain Python programs have names that end with .py.

 To execute the program, we have to tell the interpreter the name of the script:

 $ python latoya.py 2

 In other development environments, the details of executing programs may differ. Also,

most programs are more interesting than this one.

 Most of the examples in this book are executed on the command line. Working on the

command line is convenient for program development and testing, because you can type

programs and execute them immediately. Once you have a working program, you should

store it in a script so you can execute or modify it in the future.

(OR)

 b. Discuss in detail about the Algorithms

Answer:

 ALGORITHMS

 Algorithm is a step-by-step procedure, which defines a set of instructions to be executed

in a certain order to get the desired output. Algorithms are generally created independent

of underlying languages, i.e. an algorithm can be implemented in more than one

programming language. From the data structure point of view, following are some

important categories of algorithms –

 Search − Algorithm to search an item in a data structure.

 Sort − Algorithm to sort items in a certain order.

 Insert − Algorithm to insert item in a data structure.

 Update − Algorithm to update an existing item in a data structure.

 Delete − Algorithm to delete an existing item from a data structure.

Characteristics of an Algorithm

 Not all procedures can be called an algorithm. An algorithm should have the following

characteristics –

 Unambiguous − Algorithm should be clear and unambiguous. Each of its

steps , and their inputs/outputs should be clear and must lead to only one

meaning.

 Input − An algorithm should have 0 or more well-defined inputs.

 Output − An algorithm should have 1 or more well-defined outputs, and

should match the desired output.

 Finiteness − Algorithms must terminate after a finite number of steps.

 Feasibility − Should be feasible with the available resources.

 Independent − An algorithm should have step-by-step directions, which

should be independent of any programming code.

How to Write an Algorithm?

 There are no well-defined standards for writing algorithms. Rather, it is problem and

resource dependent. Algorithms are never written to support a particular programming

code.

 As we know that all programming languages share basic code constructs like loops ,

flow-control , etc. These common constructs can be used to write an algorithm.

 We write algorithms in a step-by-step manner, but it is not always the case. Algorithm

writing is a process and is executed after the problem domain is well-defined. That is, we

should know the problem domain, for which we are designing a solution.

 Example Let's try to learn algorithm-writing by using an example.

 Problem − Design an algorithm to add two numbers and display the result.

Step 1 − START

Step 2 − declare three integers a, b & c

Step 3 − define values of a & b

Step 4 − add values of a & b

Step 5 − store output of step 4 to c

Step 6 − print c

Step 7 − STOP

 Algorithms tell the programmers how to code the program.

 Alternatively, the algorithm can be written as –

Step 1 − START ADD

Step 2 − get values of a & b

Step 3 − c ← a + b

Step 4 − display c

Step 5 − STOP

 In design and analysis of algorithms, usually the second method is used to describe an

algorithm. It makes it easy for the analyst to analyze the algorithm ignoring all unwanted

definitions. He can observe what operations are being used and how the process is

flowing.

 Writing step numbers, is optional.

 We design an algorithm to get a solution of a given problem. A problem can be solved in

more than one ways.

 Hence, many solution algorithms can be derived for a given problem. The next step is to

analyze those proposed solution algorithms and implement the best suitable solution.

26. a. Explain about Decision table

Answer:

 DECISION TABLE

 A decision table is used to represent conditional logic by creating a list of tasks depicting

business level rules. Decision tables can be used when there is a consistent number of a

condition that must be evaluated and assigned a specific set of actions to be used when

the conditions are finally met.

 Decision tables are fairly similar to decision trees except for the fact that decision tables

will always have the same number of conditions that need to be evaluated and actions

that must be performed even if the set of branches being analyzed is resolved to true. A

decision tree, on the other hand, can have one branch with more conditions that need to

be evaluated than other branches on the tree.

 Decision tables are a concise visual representation for specifying which actions to

perform depending on given conditions. They are algorithms whose output is a set of

actions. The information expressed in decision tables could also be represented

as decision trees or in a programming language as a series of if-then-else and switch-case

statements.

Example

 The limited-entry decision table is the simplest to describe. The condition alternatives are

simple Boolean values, and the action entries are check-marks, representing which of the

actions in a given column are to be performed.

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Decision_tree
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Conditional_(programming)
https://en.wikipedia.org/wiki/Switch_statement

 A technical support company writes a decision table to diagnose printer problems based

upon symptoms described to them over the phone from their clients.

 The following is a balanced decision table (created by Systems Made Simple).

Printer troubleshooter

Rules

Conditions

Printer prints No No No No Yes Yes Yes Yes

A red light is flashing Yes Yes No No Yes Yes No No

Printer is recognized

by computer
No Yes No Yes No Yes No Yes

Actions

Check the power

cable

—

Check the printer-

computer cable

—

Ensure printer

software is installed

—

Check/replace ink

—

Check for paper jam

—

 Of course, this is just a simple example (and it does not necessarily correspond to the

reality of printer troubleshooting), but even so, it demonstrates how decision tables can

scale to several conditions with many possibilities.

(OR)

 b. Explain about Flowchart with an example

Answer:

FLOWCHARTING

Introduction to planning

 It is important to be able to plan code with the use of flowcharts.

 Even though you can code without a plan, it is not good practice to start coding without a guide to

follow.

A good plan:

 creates a guide you can follow

 helps you plan efficient structure

 helps communicate to others what your code will do

 Poor planning can result in inefficient, unstructured code known as 'spaghetti code'.

FLOWCHARTS

 A standard way to plan code is with flowcharts.

 Specific parts of the flowchart represent specific parts of your code.

Symbol Name What it does in the code

Start/End

Ovals show a start point or end point

in the code

Connection

Arrows show connections between

different parts of the code

Process

Rectangles show processes

e.g. calculations

(most things the computer does that

does not involve an input, output or

decision)

Input/Output

Parallelograms show inputs and

outputs

(remember print is normally an

input)

Conditional/

Decision

Diamonds show a

decision/conditional

(this is normally if, else if/elif, while

revision

adding text to flowcharts

 There is no one right or wrong way to label flowcharts; you are presenting the structure of your

code in a way that humans can understand. Only add extra details to parts of the flowchart when

it is not obvious what they do.

Creating Flowcharts

There are many tools you can use to create flow charts.

Pseudo Code

 Pseudo code is an ordered version of your code written for human understanding rather than

machine understanding.

 There is no one set way to write pseudo code.

 Good pseudo code should:

 not be in a specific coding language

 draft the structure of your code

 be understandable to humans

e.g. pseudo code

if number <= 10 then

 ouput small number sentence

 python code

if number <=10:

 print("That's a small number!")

and for)

Note: Pseudo code may seem unnecessary but it is very useful to draft bits of code without worrying

about the specifics of making it understandable to a computer.

Example 1

 This program asks the user their name then says "Hello [Name]":

flowchart for Example 1

Note: This flow chart only shows ovals and parallelograms because the code only has

a start and end and one input and one output.

pseudo code for Example 1

input username

 output "Hello username"

Python code for Example 1

name= input("What is your name?")

 print("Hello "+ name)

Example 2

Description for Example 2

 This program asks the user to "Pick a number:" then prints 1 of 3 different outputs based on how

big the number is.

Register Number: ____________

[16CAU501B]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

Coimbatore-641021.

(For the candidates admitted from 2016 onwards)

COMPUTER APPLICATIONS

SECOND INTERNAL EXAMINATION- AUGUST 2018

Fifth Semester

PYTHON PROGRAMMING

Date & Session: 14.08.2018 & FN Duration : 2 Hours

Class: III BCA Maximum : 50 Marks

PART-A (20 X 1 = 20 Marks)

Answer all the Questions
1. What error occurs when you execute? apple = mango

a) SyntaxError b) NameError

c) ValueError d) TypeError

2. Which of the following is not a complex number?

a) k = 2 + 3j b) k = 2 + 3l

c) k = complex(2, 3) d) k = 2 + 3J

3. What is the type of inf?

a) Boolean b) Integer

c) Float d) Complex

4. What do ~4 evaluate to?

a) -5 b) -4

c) -3 d) 3

5. Which of the following is a Python tuple?

a) [1, 2, 3] b) (1, 2, 3)

c) {1, 2, 3} d) {}

6. If a={5,6,7,8}, which of the following statements is false?

a) print(len(a)) b) print(min(a))

c) a.remove(5) d) a[2]=45

7. What is the output of this expression if x=22.19? >>> print("%5.2f"%x)

a) 56 b) 56.24

c) 56.23 d) 56.236

8. __________is a thing to which a variable can refer.

a) number b) object

c) list d) element

9. Operators with the same precedence are evaluated in which manner?

a) Left to Right b) Right to Left

c) Can’t say d) Right

10. Python is an example of a ________________

a) low level language b) high level language

c) middle level language d) assembly language

11. _________ is an instruction that causes the Python interpreter to display a value.

a) input statement b) print statement

c) display d) statement

12. Evaluate the expression given below if A= 16 and B = 15. A % B // A

a) 0 b) 1

c) 1 d) -1

13. Which of the following operators has its associatively from right to left?

a) + b) //

c) % d) **

14. Which of these in not a core data type?

a) Lists b) Dictionary

c) Tuples d) Class

15. Which of the following will run without errors?

a) round(45.8) b) round(6352.898,2,5)

c) round() d) round(7463.123,2,1)

16. Is Python case sensitive when dealing with identifiers?

a) yes b) no

c) machine dependent d) machine independent

17. What is the maximum possible length of an identifier?

a) 31 characters b) 63 characters

c) 79 characters d) Identifiers can be of any length.

18. Which of the following is an invalid variable?

a) my_string_1 b) 1st_string

c) __ d) foo

19. What is the result of round(0.5) – round(-0.5)?

a) 1 b) 2

c) 0 d) -1

20. What does 3 ^ 4 evaluate to?

a) 81 b) 12

c) 0.75 d) 7

Part –B (3 x 2 = 6 Marks)

Answer all the Questions

21. What is meant by Programming?

22. Define Variables

23. List some features of python

Part –C (3 x 8 = 24 Marks)

Answer all the Questions

24. a. Difference between Top down and Bottom up programming methodologies

 (OR)

 b. Explain the Data types in python

25. a. Explain how to create a variable in python with example

 (OR)

b. Write a python program to find the sum of natural number.

26. a. Explain the Structure of Python Programming

 (OR)

 b. Explain the Features of Python.

Register Number: ____________

[16CAU501B]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

Coimbatore-641021.

(For the candidates admitted from 2016 onwards)

COMPUTER APPLICATIONS

SECOND INTERNAL EXAMINATION- AUGUST 2018

Fifth Semester

PYTHON PROGRAMMING

Date & Session: 14.08.2018 & FN Duration : 2 Hours

Class: III BCA Maximum : 50 Marks

PART-A (20 X 1 = 20 Marks)

Answer all the Questions

1. What error occurs when you execute? apple = mango

a) SyntaxError b) NameError

c) ValueError d) TypeError

2. Which of the following is not a complex number?

a) k = 2 + 3j b) k = 2 + 3l

c) k = complex(2, 3) d) k = 2 + 3J

3. What is the type of inf?

a) Boolean b) Integer

c) Float d) Complex

4. What do ~4 evaluate to?

a) -5 b) -4

c) -3 d) 3

5. Which of the following is a Python tuple?

a) [1, 2, 3] b) (1, 2, 3)

c) {1, 2, 3} d) {}

6. If a={5,6,7,8}, which of the following statements is false?

a) print(len(a)) b) print(min(a))

c) a.remove(5) d) a[2]=45

7. What is the output of this expression if x=22.19? >>> print("%5.2f"%x)

a) 56 b) 56.24

c) 56.23 d) 56.236

8. __________is a thing to which a variable can refer.

a) number b) object

c) list d) element

9. Operators with the same precedence are evaluated in which manner?

a) Left to Right b) Right to Left

c) Can’t say d) Right

10. Python is an example of a ________________

a) low level language b) high level language

c) middle level language d) assembly language

11. _________ is an instruction that causes the Python interpreter to display a value.

a) input statement b) print statement

c) display d) statement

12. Evaluate the expression given below if A= 16 and B = 15. A % B // A

a) 0 b) 1

c) 1 d) -1

13. Which of the following operators has its associatively from right to left?

a) + b) //

c) % d) **

14. Which of these in not a core data type?

a) Lists b) Dictionary

c) Tuples d) Class

15. Which of the following will run without errors?

a) round(45.8) b) round(6352.898,2,5)

c) round() d) round(7463.123,2,1)

16. Is Python case sensitive when dealing with identifiers?

a) yes b) no

c) machine dependent d) machine independent

17. What is the maximum possible length of an identifier?

a) 31 characters b) 63 characters

c) 79 characters d) Identifiers can be of any length.

18. Which of the following is an invalid variable?

a) my_string_1 b) 1st_string

c) __ d) foo

19. What is the result of round(0.5) – round(-0.5)?

a) 1 b) 2

c) 0 d) -1

20. What does 3 ^ 4 evaluate to?

a) 81 b) 12

c) 0.75 d) 7

Part –B (3 x 2 = 6 Marks)

Answer all the Questions

21. What is meant by Programming?

Answer:

Programming is the process of taking an algorithm and encoding it into a notation, a

programming language, so that it can be executed by a computer. Although many

programming languages and many different types of computers exist, the important first

step is the need to have the solution. Without an algorithm there can be no program.

22. Define Variables

Answer:

Names and Assignment

We used variables for the first time: a and b in the example. Variables are used to store

data; in simple terms they are much like variables in algebra and, as mathematically-

literate students, we hope you will find the programming equivalent fairly intuitive.

Variables have names like a and b above, or x or fred or z1. Where relevant you should

give your variables a descriptive name, such as firstname or height 3.2. Variable

https://pentangle.net/python/handbook/node20.html#foot500

names must start with a letter and then may consist only of alphanumeric characters (i.e.

letters and numbers) and the underscore character, ``_''. There are some reserved words

which you cannot use because Python uses them for other things; these are listed in

Appendix B.

We assign values to variables and then, whenever we refer to a variable later in the

program, Python replaces its name with the value we assigned to it. This is best

illustrated by a simple example:

 >>> x = 5

 >>> print x

 5

23. List some features of python

Answer:

Features of python

 Simple

 Easy to learn

 Free and open source

 High Level Language

 Portable

 Interpreted

 Object Oriented

 Extensible

 Embeddable

 Extensive Libraries

Part –C (3 x 8 = 24 Marks)

Answer all the Questions

24. a. Difference between Top down and Bottom up programming methodologies

Answer:

Top-down Programming

 Top-down programming focuses on the use of modules. It is therefore also known

as modular programming. The program is broken up into small modules so that it

is easy to trace a particular segment of code in the software program. The

modules at the top level are those that perform general tasks and proceed to other

modules to perform a particular task. Each module is based on the functionality of

its functions and procedures. In this approach, programming begins from the top

level of hierarchy and progresses towards the lower levels. The implementation of

modules starts with the main module. After the implementation of the main

module, the subordinate modules are implemented and the process follows in this

way. In top-down programming, there is a risk of implementing data structures as

the modules are dependent on each other and they have to share one or more

functions and procedures. In this way, the functions and procedures are globally

visible. In addition to modules, the top-down programming uses sequences and

the nested levels of commands.

https://pentangle.net/python/handbook/node52.html#Appendix:ReservedWords

Disadvantages of top-down programming

 Top-down programming complicates testing. Noting executable exists until the

very late in the development, so in order to test what has been done so far, one

must write stubs .

 Furthermore, top-down programming tends to generate modules that are very

specific to the application that is being written, thus not very reusable.

 But the main disadvantage of top-down programming is that all decisions made

from the start of the project depend directly or indirectly on the high-level

specification of the application. It is a well-known fact that this specification

tends to change over time. When that happens, there is a great risk that large parts

of the application need to be rewritten.

How does top-down programming work?

 Top-down programming tends to generate modules that are based on

functionality, usually in the form of functions or procedures. Typically, the high-

level specification of the system states functionality. This high-level description is

then refined to be a sequence or a loop of simpler functions or procedures, that are

then themselves refined, etc.

 In this style of programming, there is a great risk that implementation details of

many data structures have to be shared between modules, and thus globally

exposed. This in turn makes it tempting for other modules to use these

implementation details, thereby creating unwanted dependencies between

different parts of the application.

Bottom-up Programming

 Bottom-up programming refers to the style of programming where an application

is constructed with the description of modules. The description begins at the

bottom of the hierarchy of modules and progresses through higher levels until it

reaches the top. Bottom-up programming is just the opposite of top-down

programming. Here, the program modules are more general and reusable than top-

down programming.

 It is easier to construct functions in bottom-up manner. This is because bottom-up

programming requires a way of passing complicated arguments between

functions. It takes the form of constructing abstract data types in languages such

as C++ or Java, which can be used to implement an entire class of applications

and not only the one that is to be written. It therefore becomes easier to add new

features in a bottom-up approach than in a top-down programming approach.

Advantages of bottom-up programming

 Bottom-up programming has several advantages over top-down programming .

 Testing is simplified since no stubs are needed. While it might be necessary to

write test functions, these are simpler to write than stubs, and sometimes not

necessary at all, in particular if one uses an interactive programming environment

such as Common Lisp or GDB.

 Pieces of programs written bottom-up tend to be more general, and thus more

reusable, than pieces of programs written top-down. In fact, one can argue that the

purpose bottom-up programming is to create an application-specific language.

Such a language is suitable for implementing an entire class of applications, not

only the one that is to be written. This fact greatly simplifies maintenance, in

particular adding new features to the application. It also makes it possible to delay

the final decision concerning the exact functionality of the application. Being able

http://dept-info.labri.fr/~strandh/Teaching/MTP/Common/Strandh-Tutorial/glossary.html
http://ecomputernotes.com/java/data-type-variable-and-array/explain-data-types-in-java
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/top-down-programming.html
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/glossary.html
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/glossary.html
http://dept-info.labri.fr/~strandh/Teaching/PFS/Common/Strandh-Tutorial/building-specialized-languages.html

to delay this decision makes it less likely that the client has changed his or her

mind between the establishment of the specifications of the application and its

implementation.

 (OR)

 b. Explain the Data types in python

Answer:

Data Types

 Variables need not be numeric. There are several types. The most useful are

described below:

 Integer: Any whole number:

 >>> myinteger = 0

 >>> myinteger = 15

 >>> myinteger = -23

 >>> myinteger = 2378

 Float: A floating point number, i.e. a non-integer.

 >>> myfloat = 0.1

 >>> myfloat = 2.0

 >>> myfloat = 3.14159256

 >>> myfloat = 1.6e-19

 >>> myfloat = 3e8

 Note that although 2 is an integer, by writing it as 2.0 we indicate that we want it

stored as a float, with the precision that entails.3.4 The last examples use

exponentials, and in maths would be written and . If the number is given in

exponential form it is stored with the precision of floating point whether or not it

is a whole number.

 String: A string or sequence of characters that can be printed on your screen.

They must be enclosed in either single quotes or double quotes--not a mixture of

the two, e.g.

 >>> mystring = "Here is a string"

 >>> mystring = 'Here is another'

 Arrays and Lists: These are types which contain more than one element,

analogous to vectors and matrices in mathematics. Their discussion is deferred

until Section 3.10 ``Arrays''. For the time being, it is sufficient to know that a list

is written by enclosing it in square brackets as follows: mylist = [1, 2, 3, 5]

 If it is not sure what type a variable is, we can use the type () function to

inspect it:

 >>> type(mystring)

 <type 'str'>

 'str' tells you it is a string. we might also get <type 'int'> (integer) and <type

'float'> (float) 3.5.

 Tuple: A tuple is a collection which is ordered and unchangeable. In Python

tuples are written with round brackets.

 Example

 Create a Tuple:

 thistuple = ("apple", "banana", "cherry")

 print(thistuple)

 Example

 We cannot change values in a tuple:

thistuple = ("apple", "banana", "cherry")

thistuple[1] = "blackcurrant" # test changeability

print(thistuple)

25. a. Explain how to create a variable in python with example

Answer:

 Names and Assignment

 We used variables for the first time: a and b in the example. Variables are

used to store data; in simple terms they are much like variables in algebra and,

as mathematically-literate students, we hope you will find the programming

equivalent fairly intuitive.

 Variables have names like a and b above, or x or fred or z1. Where relevant

you should give your variables a descriptive name, such

as firstname or height 3.2. Variable names must start with a letter and then

may consist only of alphanumeric characters (i.e. letters and numbers) and the

underscore character, ``_''. There are some reserved words which you cannot

use because Python uses them for other things; these are listed in Appendix B.

 We assign values to variables and then, whenever we refer to a variable later

in the program, Python replaces its name with the value we assigned to it. This

is best illustrated by a simple example:

 >>> x = 5

 >>> print x

 5

 You assign by putting the variable name on the left, followed by a single =,

followed by what is to be stored. To draw an analogy, you can think of

variables as named boxes. What we have done above is to label a box with an

``x'', and then put the number 5 in that box.

 There are some differences between the syntax 3.3 of Python and normal

algebra which are important. Assignment statements read right to left only. x

= 5 is fine, but 5 = x doesn't make sense to Python, which will report a

SyntaxError. If you like, you can think of the equals sign as an arrow pointing

from the number on the right, to the variable name on the left: and

read the expression as ``assign 5 tox'' (or, if you prefer, as ``x becomes 5'').

However, we can still do many of things you might do in algebra, like:

 >>> a = b = c = 0

 Reading the above right to left we have: ``assign 0 to c, assign c to b,

assign b to a''.

 >>> print a, b, c

 0 0 0

 There are also statements that are alegbraically nonsense, that are perfectly

sensible to Python (and indeed to most other programming languages). The

most common example is incrementing a variable:

 >>> i = 2

 >>> i = i + 1

 >>> print i

 3

https://pentangle.net/python/handbook/node20.html#foot500
https://pentangle.net/python/handbook/node52.html#Appendix:ReservedWords
https://pentangle.net/python/handbook/node20.html#foot501

 The second line in this example is not possible in maths, but makes sense in

Python if you think of the equals as an arrow pointing from right to left. To

describe the statement in words: on the right-hand side we have looked at

what is in the box labelled i, added 1 to it, then stored the result back in the

same box

 (OR)

b. Write a python program to find the sum of natural number.

Answer:

Python program to find the sum of natural numbers up to n where n is provided

by user

change this value for a different result

num = 16

uncomment to take input from the user

#num = int(input("Enter a number: "))

if num < 0:

 print("Enter a positive number")

else:

 sum = 0

 # use while loop to iterate un till zero

 while(num > 0):

 sum += num

 num -= 1

 print("The sum is",sum)

Output

The sum is 136

Note:

 To test the program, change the value of num.

 Here, we store the number in num and display the sum of natural numbers

up to that number. We use while loop to iterate until the number becomes

zero.

 We could have solved the above problem without using any loops using a

formula directly.

 Modify the above program to find the sum of natural numbers using the

formula below.

n*(n+1)/2

For example, if n = 16, the sum would be (16*17)/2 = 136.

26. a. Explain the Structure of Python Programming

Answer:

STRUCTURE OF PYTHON

The Python programming Language

 The programming language you will be learning is Python. Python is an example

of a high-level language; other high-level languages you might have heard of are

C, C++, Perl, and Java.

 As you might infer from the name “high-level language,” there are also lowlevel

languages, sometimes referred to as “machine languages” or “assembly 2 The

way of the program languages.” Loosely speaking, computers can only execute

programs written in low-level languages. Thus, programs written in a high-level

language have to be processed before they can run. This extra processing takes

some time, which is a small disadvantage of high-level languages.

 But the advantages are enormous. First, it is much easier to program in a high-

level language. Programs written in a high-level language take less time to write,

they are shorter and easier to read, and they are more likely to be correct. Second,

high-level languages are portable, meaning that they can run on different kinds of

computers with few or no modifications. Low-level programs can run on only one

kind of computer and have to be rewritten to run on another.

 Due to these advantages, almost all programs are written in high-level languages.

Low-level languages are used only for a few specialized applications. Two kinds

of programs process high-level languages into low-level languages: interpreters

and compilers. An interpreter reads a high-level program and executes it, meaning

that it does what the program says. It processes the program a little at a time,

alternately reading lines and performing computations.

 A compiler reads the program and translates it completely before the program

starts running. In this case, the high-level program is called the source code, and

the translated program is called the object code or the executable. Once a program

is compiled, you can execute it repeatedly without further translation.

 Python is considered an interpreted language because Python programs are

executed by an interpreter. There are two ways to use the interpreter: command

line mode and script mode. In command-line mode, you type Python programs

and the interpreter prints the result:

$ python

Python 2.4.1 (#1, Apr 29 2005, 00:28:56)

Type "help", "copyright", "credits" or "license" for more

information.

>>> print 1 + 1

2

 The first line of this example is the command that starts the Python interpreter.

The next two lines are messages from the interpreter. The third line starts with

>>>, which is the prompt the interpreter uses to indicate that it is ready. We typed

print 1 + 1, and the interpreter replied 2. Alternatively, you can write a program in

a file and use the interpreter to execute the contents of the file. Such a file is

called a script. For example, we used a text editor to create a file named latoya.py

with the following contents:

print 1 + 1

 By convention, files that contain Python programs have names that end with .py.

 To execute the program, we have to tell the interpreter the name of the script:

 $ python latoya.py 2

 In other development environments, the details of executing programs may differ.

Also, most programs are more interesting than this one.

 Most of the examples in this book are executed on the command line. Working on

the command line is convenient for program development and testing, because

you can type programs and execute them immediately. Once you have a working

program, you should store it in a script so you can execute or modify it in the

future.

 (OR)

 b. Explain the Features of Python.

Answer:

FEATURES OF PYTHON

 Simple

 Python is a simple and minimalistic language. Reading a good Python

program feels almost like reading English, although very strict English! This

pseudo-code nature of Python is one of its greatest strengths. It allows you to

concentrate on the solution to the problem rather than the language itself.

 Easy to Learn

 As you will see, Python is extremely easy to get started with. Python has an

extraordinarily simple syntax, as already mentioned.

 Free and Open Source

 Python is an example of a FLOSS (Free/LibrÃ© and Open Source Software).

In simple terms, you can freely distribute copies of this software, read it's

source code, make changes to it, use pieces of it in new free programs, and

that you know you can do these things. FLOSS is based on the concept of a

community which shares knowledge. This is one of the reasons why Python is

so good - it has been created and is constantly improved by a community who

just want to see a better Python.

 High-level Language

 When you write programs in Python, you never need to bother about the low-

level details such as managing the memory used by your program, etc.

 Portable

 Due to its open-source nature, Python has been ported (i.e. changed to make it

work on) to many platforms. All your Python programs can work on any of

these platforms without requiring any changes at all if you are careful enough

to avoid any system-dependent features.

 You can use Python on Linux, Windows, FreeBSD, Macintosh, Solaris, OS/2,

Amiga, AROS, AS/400, BeOS, OS/390, z/OS, Palm OS, QNX, VMS, Psion,

Acorn RISC OS, VxWorks, PlayStation, Sharp Zaurus, Windows CE and

even PocketPC !

 Interpreted

 This requires a bit of explanation.

 A program written in a compiled language like C or C++ is converted from

the source language i.e. C or C++ into a language that is spoken by your

computer (binary code i.e. 0s and 1s) using a compiler with various flags and

options. When you run the program, the linker/loader software copies the

program from hard disk to memory and starts running it.

 Python, on the other hand, does not need compilation to binary. You

just run the program directly from the source code. Internally, Python

converts the source code into an intermediate form called bytecodes and then

translates this into the native language of your computer and then runs it. All

this, actually, makes using Python much easier since you don't have to worry

about compiling the program, making sure that the proper libraries are linked

and loaded, etc, etc. This also makes your Python programs much more

portable, since you can just copy your Python program onto another computer

and it just works!

 Object Oriented

 Python supports procedure-oriented programming as well as object-oriented

programming. In procedure-oriented languages, the program is built around

procedures or functions which are nothing but reusable pieces of programs.

In object-oriented languages, the program is built around objects which

combine data and functionality. Python has a very powerful but simplistic way

of doing OOP, especially when compared to big languages like C++ or Java.

 Extensible

 If you need a critical piece of code to run very fast or want to have some piece

of algorithm not to be open, you can code that part of your program in C or

C++ and then use them from your Python program.

 Embeddable

 You can embed Python within your C/C++ programs to give 'scripting'

capabilities for your program's users.

 Extensive Libraries

 The Python Standard Library is huge indeed. It can help you do various things

involving regular expressions, documentation generation, unit testing,

threading, databases, web browsers, CGI, ftp, email, XML, XML-RPC,

HTML, WAV files, cryptography, GUI (graphical user interfaces), Tk, and

other system-dependent stuff. Remember, all this is always available wherever

Python is installed. This is called the 'Batteries Included' philosophy of

Python.

 Besides, the standard library, there are various other high-quality libraries

such as wxPython, Twisted, Python Imaging Library and many more.

http://www.wxpython.org/
http://www.twistedmatrix.com/products/twisted
http://www.pythonware.com/products/pil/index.htm

	1.pdf (p.1-2)
	2.pdf (p.3-6)
	3.pdf (p.7-26)
	4.pdf (p.27-31)
	5.pdf (p.32-47)
	6.pdf (p.48-53)
	7.pdf (p.54-75)
	8.pdf (p.76-80)
	9.pdf (p.81-130)
	10.pdf (p.131-138)
	11.pdf (p.139-164)
	12.pdf (p.165-170)
	13.pdf (p.171-172)
	14.pdf (p.173-191)
	15.pdf (p.192-193)
	16.pdf (p.194-204)

