FULL PAPER

WILEY Applied Organometallic Chemistry

Synthesis and structural and DNA binding studies of monoand dinuclear copper(II) complexes constructed with --O and --N donor ligands: Potential anti-skin cancer drugs

Champaka Gurudevaru¹ | Mohan Gopalakrishnan^{1,2}† | Kabali Senthilkumar¹† | Hridya Hemachandran³ | Ramamoorthy Siva³ | Thothadri Srinivasan⁴ | Devadasan Velmurugan⁴ | Swaminathan Shanmugan⁵ | Nallasamy Palanisami¹

¹Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India

²Department of Chemistry, Karpagam University, Coimbatore 641021, Tamil Nadu, India

³ School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India

⁴CAS in Crystallography and Biophysics, University of Madras, Guindy Maraimalai Campus, Chennai 600025, Tamil Nadu, India

⁵Research Institute and Department of Chemistry, SRM University, Kattankulathur 603203, Tamil Nadu, India

Correspondence

Nallasamy Palanisami, Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India. Email: palanisami.n@gmail.com †These authors contributed equally to this work. Mononuclear and dinuclear copper(II) complexes with thiophenecarboxylic acid, $[Cu(3-TCA)_2(2,2'-bpy)]$ (1), $[Cu(3-Me-2-TCA)_2(H_2O)(2,2'-bpy)]$ (2), [Cu(5-Me-2-TCA)₂(H₂O)(2,2'-bpy)] (3) and $[Cu_2(2,5-TDCA)]$ $(DMF)_2(H_2O)_2(2,2'-bpy)_2](ClO_4)_2$ (4) (where 3-TCA = 3-thiophenecarboxylic acid; 3-Me-2-TCA = 3-methyl-2-thiophenecarboxylic acid; 5-Me-2-TCA = 5methyl-2-thiophenecarboxylic acid; 2,5-TDCA = thiophene-2,5-dicarboxylic acid; 2,2'-bpy = 2,2'-bipyridyl; DMF = N,N-dimethylformamide), were synthesized. Compounds 1-4 were extensively characterized using both analytical and spectroscopic methods. Additionally, the solid-state structures of 1 and 4 were unambiguously established from single-crystal X-ray diffraction studies. The hexacoordinated Cu(II) centre in 1 (CuO₄ N_2) is a distorted octahedral geometry whereas the pentacoodinated 4 (CuO₃N₂) has distorted square pyramidal geometry. Compounds 1 and 4 exhibit intermolecular hydrogen bonding which leads to the formation of two- and three-dimensional supramolecular architectures, respectively. Spectrophotometric and computational investigations suggest that these compounds bind with DNA in minor groove binding such that $K_{\rm b} = 4.9 \times 10^5 \text{ M}^{-1}$ and $K_{\rm sv} = 3.4 \times 10^5 \text{ M}^{-1}$, and binding score of -5.26 kcal mol⁻¹. The binding affinity of these complexes to calf thymus DNA is in the order 2 > 3 > 4 > 1. Methyl-substituted thiophene ring increases the DNA binding affinity whereas unsubstituted thiophene ring DNA binding rate is reduced. The methyl group on the thiophene ring would sterically hinder $\pi - \pi$ stacking of the ring with DNA base pairs, and subsequently they are involved in hydrophobic interaction with the DNA surface rather than partial intercalative interaction. Compounds 1-4 show pronounced activity against B16 mouse melanoma skin cancer cell lines as measured by MTT assay yielding IC_{50} values in the micromolar concentration range. The compounds could prove to be efficient anti-cancer agents, since at a concentration as low as 2.1 μ g ml⁻¹ they exerted a significant cytotoxic effect in cancer cells whereas cell viability was not affected in normal cells.