M.Sc., BIOCHEMISTRY
CHOICE BASED CREDIT SYSTEM (CBCS)

Syllabi
2017-2018

DEPARTMENT OF BIOCHEMISTRY
FACULTY OF ARTS, SCIENCE AND HUMANITIES

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)
(Established under section 3 of UGC Act, 1956)
Pollachi Main Road, Eachanari (Post), Coimbatore- 641021, Tamil Nadu, India
Phone: 0422 – 2980011 – 15 Fax No: 0422 – 2980022-23
Email: info@karpagam.com Web: www.kaheedu.edu.in
SCOPE

This course provides an overview of the macromolecules that are key to all living system.

OBJECTIVE

This course enable the students to understand about higher order structure of biomolecules i.e. Polysaccharides, proteins, lipids and nucleic acids.

UNIT I

Polysaccharides: Occurrence, structure and biological functions of cellulose, chitin, starch and glycogen. Fructans, arabins and galactans(brief account). Dietary fibre. Occurrence, structure, and biological functions of bacterial cell wall polysaccharides and blood group antigens. Structure and significance of glycoconjugates - Glycosaminoglycans – structure and biological role of hyaluronic acid, chondroitin sulfate and heparin, sialic acid; glycoproteins and glycolipids.

UNIT II

UNIT III

UNIT IV

UNIT V

Nucleic acid interaction with proteins: DNA binding motifs in proteins – the basic helix loop helix (bHLH) motif, zinc finger, the leucine zipper, helix-loop helix and homeo domain. RNA binding motifs in proteins. Molecular aspects of protein-nucleic acid binding – direct interactions. Techniques characterizing nucleic acid-protein complex – chromatin immunoprecipitation assay, DNase I footprinting.

REFERENCES

Nucleic acid structure and recognition. Neidle, Oxford University Press, 2002

SCOPE
Enzyme and microbial technology is a rapidly growing field due to its higher applications in disease diagnosis, industries and production of desired products from microorganisms.

OBJECTIVES
This paper provides impact knowledge about the structural organization of proteins, kinetics of enzymes, production, purification, characterization and immobilization of enzymes. It also gives knowledge about the application of enzymes and to produce desired products and strains from microorganisms.

UNIT I
Enzymes - Nomenclature and classification of Enzymes with examples; coenzymes and cofactors. Active site, catalytic triad. Lock and key model, Induced fit model. Factors affecting enzyme activity. Isolation, purification and characterization of enzymes. Mechanism of enzyme action – Acid base and covalent catalysis (Chymotrypsin, lysozyme), metal activated and metalloenzymes.

UNIT II

UNIT III

UNIT IV
Microbial Growth: Balanced and Unbalanced microbial growth; Measurement of growth; Principles of microbial growth and culture systems-batch culture, fed batch culture, semi-continuous culture and continuous culture. Isolation and screening of industrially important microbes. Important strains for better yield. Design of a fermenter. Types of bioreactor-Continuous stirred tank, Bubble column, Airlift, Fluidized bed.
Packed bed and Photobioreactor.

UNIT V
Production of fermented products and downstream processing: Production of alcohol and alcoholic beverages. Microbial production of Organic acids: Source, recovery and uses of Citric acid, Lactic acid, Acetic acid and L-ascorbic acid. Production of antibiotics: Penicillin and Tetracyclin. Bioinsecticides: Production of Bacterial and fungal polysaccharides, commercial production of Xanthan gum and pullulan. Production of edible mushroom and SCP.
Biofertilizers (Phosphobacterium and Rhizobium sp.,- Basics only).

TEXT BOOKS

REFERENCES

UNIT I

UNIT II

Chromatography: Principles, Types – paper chromatography, thin layer chromatography and HPTLC, Column chromatography - Ion exchange chromatography, affinity chromatography, gel filtration chromatography, Low pressure liquid chromatography (LPLC) and High Performance Liquid Chromatography (HPLC)- Normal and Reverse Phase Gas -liquid chromatography Mass spectroscopy (GC – MS), LC-MS, MALDI-TOF, ICPMS, Application of Chromatography. Separation of phytoconstituents using TLC.

UNIT III

UNIT IV

Flowcytometry: Principles and applications.

UNIT V

TEXT BOOKS

REFERENCES

SCOPE

To develop an understanding of the fundamentals of cell biology, structure and function of living organisms, their life processes and Biochemical basis of motility, membrane and organelle biogenesis, cell-cell interaction, cell-cell signaling, Cancer and cell cycle.

OBJECTIVES
Understanding of the molecules within cells. Interactions between cells that allow construction of multi cellular organisms and Understanding the structural and functional aspects of the cell provides the student with a strong foundation in the molecular mechanisms underlying cellular function.

UNIT I

UNIT II

UNIT III

UNIT IV
Cell – Matrix interaction: Cell – Cell interaction: Extra cellular matrix; Collagen,
hyaluronan and proteoglycans, laminin, integrins and fibronectins.

Cell – Cell signaling – Role of Signaling molecules and their receptors; functions of cell surface receptors, pathways of intracellular signal transduction, second messengers, G-protein coupled receptors, receptor tyrosine kinases, Ras, MAP kinases in cellular growth and functions.

UNIT V
Cell cycle and cancer: Cell cycle and its control, Cell cycle control in mammalian cells, checkpoints in cell cycle regulation.
Cancer: Properties of tumour cells and genetic basis and onset of cancer.
Tumour viruses – DNA & RNA Viruses as transforming agents – mechanism.

TEXT BOOKS

REFERENCES

SCOPE

To provide sufficient knowledge about plant cells and its organelles, various metabolic pathways and its applications in plant productivity, Plant growth substances, plant secondary metabolites and its production, technical advantages in plant tissue culture and gene transfer technology to increase production of plant secondary metabolites.

OBJECTIVES

Understanding of the plant cell organelles and their functions, understanding the functions and regulations of major biosynthetic pathways of plants, plant growth substances, obtaining knowledge on tissue culture techniques and metabolic engineering to increase the production of plant secondary metabolites and to become familiar with the exciting topics in plant biology research.

UNIT I

Plant cell: Structure of plant cell – cell wall, vacuoles, plastids, mitochondria, peroxisomes and Golgi complex. Overview of photosynthesis: photosynthetic apparatus, reaction center, photosystems I and II, mechanism of photosynthesis-cyclic and non cyclic photophosphorylation; evidences in support of light and dark reactions.

UNIT II

Assimilatory mechanisms in plants: Photorespiration and water consumption, CO₂ assimilation by C3 and C4 plants, CAM plants. Nitrogen assimilation; reduction of nitrate, nitrogen fixation in symbiotic and non-symbiotic plants, nitrogen cycle. Sulphate metabolism in leaf; sulfite reduction and sulphur cycle, glutathione synthesis. Carbon and phosphorus cycles.

UNIT III

UNIT IV

UNIT V

TEXT BOOKS

REFERENCES

SCOPE
This course has been intended to provide the student in the emerging area of plant tissue culture and their importance, which plays an essential role in present, future use and applications of plant biology.

OBJECTIVES
Students get an idea about aseptic condition, plant hormones, various transformation methods and application.

UNIT I
Growth and Development:

UNIT II
Introduction to plant tissue culture: Totipotency, Tissue culture Media (Composition and preparation). Nutritional components of tissue culture media. Plant Hormones - Types, structures, biosynthesis & metabolism. Basic concepts of aseptic cultures and its uses Different areas and applications of plant tissue culture.

UNIT III
Basic techniques in tissue culture: Design & lab setup of Tissue Culture laboratory. Types of culture, Initiation of callus and suspension cultures, Micro propagation (Organogenesis, Somatic Embryogenesis, Shoot tip culture, Rapid clonal propagation, Embryo Culture and Pollen culture). Production of haploids and their application, Storage of plant genetic resources and Cryopreservation.

UNIT IV
Plant transformation technology: Ti & Ri Plasmid and thier transfer mechanisms, Use of Ti & Ri as vectors, Binary vectors, Use of 35s & other promoters genetic markers- methods of nuclear transformation, viral vectors & their applications, Use of reporter gene, Particle bombardment, electroporation, Microinjection, Chloroplast transformation- transplastomics, Transformation of monocots, Transgene stability & gene silencing in Plant transformation.
UNIT V

Plant tissue culture and its applications: Transgenic plants - for biotic (weeds, insects, viruses, fungi and bacteria) and abiotic (drought, salt, temperature, poor soil quality and oxidative) stress tolerance. Production of secondary metabolites. Molecular farming (improvement in protein, lipids, carbohydrates). Plant antibodies, vaccines, therapeutic proteins and active principles. Biofortification of important crops (rice and banana).

TEXT BOOKS

REFERENCES

SCOPE
The paper deals with isolation of bioactive compounds from medicinal plants and testing their efficacy.

OBJECTIVES
The students can understand the techniques of isolation and characterization secondary metabolites from plants and their biological activity.

UNIT I

UNIT II
General extraction and isolation techniques for compounds from plants. Techniques involved in extraction of phytochemicals – Perculation, Soxhlet extraction, Supercritical Fluid extraction, Pilot scale extraction, reflux and other methods. Factors affecting extraction.

UNIT III
Isolation and purification techniques – Thin layer and Column chromatography. Chemical fingerprinting – HPLC, HPTLC, FTIR, NMR and GC-MS.

UNIT IV
Biotechnology of medicinal plants: Production of secondary metabolites from plant culture. Indian Standard Specifications (ISI) laid down for sampling and testing of various drugs in finished form by the Bureau of Indian Standards. Toxicity testing in drugs and Safety.

UNIT V

REFERENCES

Colorimetry
1. Isolation and estimation of starch from potato (Anthrone method)
2. Isolation and estimation of glycogen from liver (Anthrone method)
3. Estimation of Total carotenoids (Spectroscopic method)
4. Estimation of fructose in fruits (Resorcinol method)
5. Estimation of ascorbic acid (DNPH method)
6. Estimation of Vitamin E (Dipyridyl method)

Fluorimetry
7. Estimation of thiamine from cereals or fruits
8. Estimation of riboflavin

Titrimetry
9. Estimation of lactose in milk
10. Estimation of calcium in milk

Separation techniques
12. Separation of plant pigments by TLC.
13. Separation of plant pigments by column chromatography.

Cell biology:
15. Preparation of standard buffer and determination of pH of buffers.
16. Subcellular fractionation by differential centrifugation and purity assessment with marker enzymes (Group Experiment).
17. Salting out of proteins using ammonium sulphate precipitation

REFERENCES

Plant Biochemistry

1. Phytochemical screening of any one selected medicinal plant
2. Estimation of Tannins
3. Estimation of Flavonoids
4. Estimation of Chlorophyll
5. Estimation of Phenols

MICROBIOLOGY

6. Isolation of pure culture – serial dilution, pour plate, spread plate, streak plate methods.
7. Colony morphology – colony counting.
8. Staining techniques- simple, differential, spore, and fungal staining.
9. Antibiotic resistance / sensitivity test (Disc method)
11. Identification of microorganisms – biochemical tests (IMVIC test)(Group Experiment)
12. Microbiology of potable water
13. Isolation, characterization and purification of ANY one of the following microbial enzymes
 a) Amylase
 b) Protease
15. Assay of antifungal activity of ANY ONE selected medicinal plant by Disc or Well diffusion. TLC- Bioautography.

PLANT TISSUE CULTURE (Group experiment)

16. Preparation of tissue culture media
17. Surface sterilization
18. Induction of meristem culture
20. Regeneration of shoot and root from callus culture.

REFERENCES

SCOPE
To explain generation and transformation of energy in metabolic pathways, maintenance of homeostasis of metabolites by intrinsic and extrinsic control mechanism.

OBJECTIVES
To explain the metabolic pathways of carbohydrates, lipids, amino acids, nucleic acid metabolism and their regulation with various metabolic conditions with special reference to control of enzyme activity.

UNIT I
Introduction to control of enzyme activity: Allosteric interaction; Reversible covalent modification; proteolytic action; control of amount of enzyme; control of rates of enzyme degradation; feed back inhibition; feed forward stimulation. Role of compartmentation. Elucidation of Metabolic pathways- Single-and Multi-step pathways. Experimental approaches to study the metabolism- using metabolic inhibitors and isotopes.

UNIT II
Carbohydrate Metabolism: An overview of Glycolysis and Gluconeogenesis. Regulation of Glycolysis and Gluconeogenesis- Reciprocal control of Glycolysis and Gluconeogenesis, TCA cycle- steps, regulation at branch points; Glycogen Metabolism: Overview of glycogenesis and glycogenolysis. Reciprocal control of glycogenesis and glycogenolysis. Hormonal regulation of fuel metabolism; Metabolic disorders-Diabetes mellitus and insipidus.

UNIT III
Lipid metabolism: An overview of fatty acid synthesis and degradation, Regulation of fatty acid synthesis- control of acetyl CoA carboxylase and fatty acid synthetase complex; Reciprocal control of fatty acid synthesis and degradation. Biosynthesis of triacyl glycerol, phosphatidyl choline, phosphotidyl ethanolamine and sphingomyelin and their regulation. Synthesis and degradation of cholesterol and its regulation. Obesity and regulation of body mass. Metabolic disorders- Atherosclerosis, Hyper and hypo lipoproteinemia.

UNIT IV

UNIT V
Nucleic acid metabolism: De novo synthesis of purine and its regulation – Role of PRPP amino transferase. De novo synthesis of pyrimidine and its regulation – Role of aspartate carbamyl transferase. Regulation of deoxy ribonucleotides by activators and
inhibitors. Tissue specific metabolism- Metabolic profile of major organs- Brain, Muscle, Liver and Adipose tissue. Integration of metabolism. Metabolic disorders- Gout, SCID.

TEXT BOOKS

REFERENCES

SCOPE
To shed light on the structure, function and relationship between the macromolecule DNA and protein.

OBJECTIVES
To explain gene structure, replication, transcription, translation recombination mechanism of DNA in both Prokaryotic and eukaryotic system.

UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V
Eukaryotic gene regulation: Transcriptionally active chromatin, chromatin remodeling, DNA binding transactivators and coactivators. Regulation of gene expression by intracellular and intercellular signal, RNAi.

TEXT BOOKS

REFERENCES

SCOPE
This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology.

OBJECTIVES
To list and understand the types of characteristics that make an organism ideal for the study of developmental biology. To comprehend cellular mechanisms of developmental stages.

UNIT-I
Mendelian Principle and experiments: Mendelian inheritance-principles; Mendel’s experiments-monohybrid, dihybrid trihybrid and multihybrid crosses. Interaction of genes: incomplete dominance, codominance, epistasis, complementary genes, duplicate genes, polymeric genes, modifying genes; lethal genes. Environmental influence of gene expression: penetrance and expressivity; temperature, light, phenocopies. Environmental effects and twin studies; human intelligence. Quantitative or polygenic inheritance: Inheritance of kernel color in wheat; corolla length in tobacco skin color inheritance in man, transgressive and regressive variation. Multiple alleles; Sex determination; Extra chromosomal inheritance. Genetic abnormalities

UNIT-II

UNIT-III

UNIT-IV
Developmental Stage II: Cell division in cleavage – Chemical changes–Patterns of embryonic cleavage – Morula and Blastula – Role of egg cortex – Morphogenetic gradients – Fate map – Gastrulation – Primary organ, Rudimental organs, Organizer – Morphogenetic movements- invagination, extension, ingression movements and locomotion.
UNIT-V

Developmental Stage III: Organogenesis: Induction and differentiation of Brain, eye, ear, limb, Heart, kidney, Development of Immune system, Genetic basis of differentiation – selective action of genes–gene action in development – Nuclear transplantation–apoptosis during development– aging–Teratogens and Teratogenesis.

REFERENCES

SCOPE
The scope of this paper is to introduce the main principles of bioinformatics the coverage will include biological data base, sequence alignment and structure prediction.

OBJECTIVES
Understand the genomic data acquisitions and analysis comparative and predictive analysis of DNA and Protein sequence.

UNIT I
Definition, concepts of Bioinformatics: Objectives, History of Bioinformatics, Milestones, Genome sequencing projects, Human Genome Project- Science, applications and ELSI.
Introduction to Biological databases: Types of databases, sequence databases-nucleic acid sequence databases, GenBank, protein sequence database, Swiss-Prot, PIR, motif database-PROSITE, structural databases, bibliographic databases and organism specific databases-GMOD- Searching and retrieval of data-Entrez and SRS.

UNIT II
Introduction to sequence Alignment: Pairwise and multiple sequence alignment, substitution matrices, Similarity searching programs, BLAST, FASTA, Multiple sequence alignment – CLUSTAL, Phylogenetic analysis-PHYLIP theory of phylogeny, tree building methods.

UNIT III
Protein prediction strategies and programs: Protein Secondary Structure Prediction, three dimensional structure prediction-Comparative modeling, threading, protein folding and visualization of molecules – Visualization tools-RasMol, Deep View.

UNIT IV
Gene Identification and Prediction: Gene Mark, Gene Scan, Pattern Recognition, Global gene expression studies-DNA Micro array.

UNIT V
Applications of Bioinformatics-Molecular medicine, biotechnology, agricultural, Computer Aided Drug Designing- Lead molecules, properties, ADME profiles, QSAR, receptors, docking.

REFERENCES

Education, Singapore.

SCOPE

To make the student to understand the concept of gene manipulation and gene transfer technologies.

OBJECTIVES

To understand the manipulation of genes, transfer techniques, expression systems and genetically modified foods.

UNIT I

UNIT II

UNIT III
Isolation and characterization of gene transcripts: Introduction, Converting mRNA transcripts into cDNA, Screening representative cDNA libraries, Functional sequencing of cDNA expression libraries. Expressed cDNAs compared with computer databases. Characterization of recombinant proteins- Processing, purification and refolding and stabilization-Insulin, hGH, tpA.

UNIT IV
Mutagenesis: Site-directed mutagenesis, In vitro mutagenesis-Linkers, synthetic oligonucleotides and transposons, Role of Tagging in gene analysis, Identification and isolation of genes through T-DNA or transposons.

Gene therapy- Different strategies for gene therapy, therapeutics based on targeted exhibition of gene expression and mutation correction in vivo, Gene therapy for inherited diseases, ADA, FH, Cystic fibrosis.

UNIT V
Transgenics: Gene transfer techniques- Microinjection, biolistic methods, vector based transfer.

Transgenic plants: Agrobacterium & Ti plasmids. Methods of engineering herbicide
resistance plants, Stress resistance plants and modification of plant nutritional content (amino acids, β- carotene) Plants as bioreactors: edible vaccines.

Transgenic animals: Method of Engineering transgenic mice, transgenic cattle- applications Biosafety- regularities and concerns. Societal impact of genetically modified food.

REFERENCES

SCOPE

This course is designed to provide students with the basic skills needed to manipulate mammalian cells in culture. Laboratory skills in cell growth, cell passage, gene transfection, and enzyme assays will be acquired. Since this is a upper level course, the student should be familiar with common biological terms.

OBJECTIVE

Understanding the principles of animal cell culture and its application.

UNIT I
Introduction, importance, history of cell culture development, different tissue culture techniques including primary and secondary culture, continuous cell lines, suspension culture, organ culture, advantages and limitations medical/pharmaceutical products of animal cell culture-genetic engineering of animal cells and their applications. Risks in a tissue culture laboratory and safety - biohazards.

UNIT II
Different types of cell culture media, growth supplements, serum free media, balanced salt solution, other cell culture reagents, culture of different tissues and its application. Facilities for animal cell culture-infrastructure, equipment, culture vessels. Biology and characterization of cultured cells-cell adhesion, proliferation, differentiation, morphology of cells and identification.

UNIT III
Primary cell culture techniques - mechanical disaggregation, enzymatic disaggregation, separation of viable and non-viable cells. Mass culture of cells - manipulation of cell line selection - types of cell lines -maintenance of cell lines - immobilization of cells and its application - synchronization of cell cultures and cell division - production of secondary metabolites - biotransformation - Induction of cell line mutants and mutations - cryopreservation – germplasm conservation and establishment of gene banks.

UNIT IV
Animal cell culture scale up: Scale up in suspension - stirrer culture, continuous flow culture, air-lift fermentor culture; Scale up in monolayer - Roller bottle culture, multi surface culture, multi array disks, spirals and tubes - monitoring of cell growth. Organ culture - whole embryo culture - specialized culture techniques - measurement of cell death.

UNIT V
Tissue engineering: Design and engineering of tissues - tissue modeling. Embryonic stem cell engineering - ES cell culture to produce differential cells - Human embryonic stem cell research. Transgenic animals-transgenic animals in xenotransplantation
TEXT BOOKS

REFERENCES

SCOPE
To understand the emerging trends in genomics and proteomics.

OBJECTIVES
To make the students to acquire knowledge in the applications of genomics and proteomics tools and to address the modern biological issues.

UNIT I
Genome Analysis: Introduction to Genes, Genome organization – prokaryotes and eukaryotes, Genetic markers- RFLP, Mini and Micro satellite, STS, EST, SSCP, RAPD, RFLP, SNP and SSR. Human Genome and Genomic analysis: Size, features, composition and characteristics of human genome – Sequence repeats, transposable elements, gene structure and pseudogenes.

UNIT II
Sequencing Genomes- methodology, chain termination method, chemical degradation method, shotgun sequencing and assembly of contiguous DNA sequence. cDNA and genomic library construction. Genomic Mapping: Different types of Genome maps and their uses, Genetic and Physical mapping techniques. Map resources. Practical uses of genome maps, NGS

UNIT III

UNIT IV

UNIT V
TEXT BOOKS

REFERENCES

MOLECULAR BIOLOGY
1. Isolation of DNA and RNA from liver
2. Estimation of DNA and RNA - UV method
3. Estimation of DNA by Diphenylamine method
4. Estimation of RNA by Orcinol method
5. Estimation of Protein by Lowry’s method
6. Culturing and Isolation of Plasmid DNA
7. Agarose gel electrophoresis of DNA
8. Restriction digestion analysis of DNA (Demonstration)
9. Preparation of competent E coli- transformation (demonstration)
10. Determination of Molecular weight of polypeptides by SDS PAGE (group)
11. Polymerase Chain Reaction for amplification of DNA (demonstration)
12. Ligation of DNA
13. Southern Blot Analysis (Demonstration)
14. Western Blotting (Demonstration)

ANIMAL TISSUE CULTURE (Demonstration)
15. Preparation and Sterilization of media
16. Cell lines and maintenance - Trypsinisation, Passaging, Staging
17. Cell counting and cell staining

REFERENCES

1. Biological Databanks Sequence databases, Structure Databases, Specialized databases
2. Data base file formats.
3. Data retrieval tools and methods (PUBMED, ENTREZ, SRS)
4. Sequence Similarity searching (NCBI-BLAST, FASTA)
5. Protein sequence analysis (ExPASY proteomics tools)
6. Multiple sequence alignment (Clustal-W)
7. Gene structure and function prediction (Using ORF Finder, Genscan, GeneMark)
8. Molecular Phylogeny (PHYLIP)
9. Sequence Analysis using EMBOSS
10. Protein structure visualization – RASMOL (Menu function and Command line entries), Deep View.

REFERENCES:

SCOPE
To provide knowledge with various aspects of immunology like immune system and its response to invading antigens, derangement of immune system and immunotherapy.

OBJECTIVES
To expose the students with humoral and cell mediated immune system, antigen antibody interaction, over and under response of immune system in diseased conditions, immunotherapy and immunotechniques. (Clinical immunology, diagnostic immunology)

UNIT I

UNIT II
Antigen: Epitope, B cell and T cell epitope, haptens, viral and bacterial antigens; factors influencing adjuvant technology. Immunoglobulins-domains, B cell receptors, antigenic determinants on immunoglobulins, Immunoglobulin super family. Immunoglobulin genes: multigene family; Immunoglobulin rearrangement- antibody diversity.

UNIT III
Hyper sensitivity: Type I, II, III, IV, V and VI. Complement-definition, classical and alternate pathway, MHC: organization, MHC molecules and genes, MHC and immune responsiveness, Transplantation and rejection.

UNIT IV
Immunity to infection: Definition and types of immunity, Primary and secondary immunodeficiency diseases. Auto-immune diseases, Tumor immunology Vaccines: Active and passive immunization, Types of vaccines with example. Monoclonal Antibodies- Production and Applications.

UNIT V
Immunoo Techniques: Antigen-Antibody interactions- precipitation reaction, agglutination tests- haemagglutination; Complement fixation test. Direct and indirect immunofluorescence, RIA, ELISA, CMIA, ECLIA, Immunoblotting, effector cell assay, Heamolytic plaque assay and Elispot assay.
TEXT BOOK

REFERENCES

SCOPE
A career in diagnostic laboratory or in Research laboratory is available. Students interested can continue their post graduation and research work.

OBJECTIVES
The knowledge acquired in clinical biochemistry shall help the students to understand the basics of life processes and function of the human body in health and disease, to integrate the various aspects of metabolism & their regulatory pathways.

UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V
Pathophysiology of – hypothalamus and pituitary (dwarfism, Klienfelter syndrome, adenoma, galactorrhea, amenorrhea). Pathophysiology of thyroid cretinism, 37
myxedema, hashimoto’s (autoimmune thyroid disorder), hypo- and hyperparathyroidism, bone (osteopenia and osteoporosis), adrenal (Cushing syndrome and Addison’s disease) Pancreas (IDDM and NIDDM) and gonads (cystic ovaries, endometriosis, hypogonadism, cryptorchidism and testicular carcinoma).

TEXT BOOKS

REFERENCES

Wards, MJC and Bouchier, I., (1995), Davidson’s Principles and Practice of Medicine, English Language Book Society.

SCOPE

This course provides an overview of the synthesis and regulation of various endocrine systems.

OBJECTIVE

To demonstrate the biosynthesis of various hormones and its influence on the physiological function of the body.

Unit I: General Introduction and Hypothalamo-hypophyseal axis

Unit II: Protein/Peptide hormones, Steroid and Thyroid hormones

Unit III: Hormones and gonads

Unit IV: Hormone action

Protein and steroid hormone receptors and their signaling cascades; non-genomic modes of action; Ras-Raf-MAPK 39 signaling- PI3K 39 signaling and genomic actions of hormones- thyroid hormone nuclear receptor super family- Angiotensin- Rennin angiotensin system-, atrial natriuretic hormones. Vasopressin and water retention.

Unit V: Investigative techniques in endocrinology

Hormone assays, RIA, IRMA, Radio receptor assay, extraction, purification, and quantification of hormone receptors (cell surface, cytosolic and nuclear receptors, semen analysis. Radiolabeling techniques – Radioiodination of peptides, autoradiography. Properties of different types of radioisotopes commonly used in biology, radioactivity, detection and measurement of radioactivity, safely guidelines and disposal procedures.
REFERENCES

SCOPE
The goal of the paper will ensure the widespread visibility and high impact of Drugs, thereby promoting on emerging research, pointing the way for the establishment of new medicines – from the identification of targets, through to the synthesis and evaluation of putative therapeutic entities.

OBJECTIVE
This paper gives an insight knowledge about the emerging themes, and provides an in depth analysis of specific drug classes, its metabolism and therapeutic approaches.

UNIT I

UNIT II

UNIT III
Genetically engineered protein and peptide agents as drugs, Novel drug delivery systems, anti-AIDS drug development, oncogenes as targets for drugs, multidrug resistance phenotypes, production of secondary metabolites by plant tissue culture. Genome based medicine.

UNIT IV

UNIT V
Brain – Neurotransmitters, encephalins and endorphins; general function of autonomic and somatic nervous system; cholinergic transmission and receptors; adrenergic transmission and receptors; muscarinic receptors. Non steroidal and anti inflammatory drugs;
adrenergic blocking drugs; cholinergic blocking drugs; muscarinic blocking drugs; parkinson’s disease; Alzheimer’s disease. Neurodegenerative disorders – Amyotrophic, lateral sclerosis, senile dementia, schizophrenia, Huntington’s disease.

TEXTBOOKS

REFERENCES

SCOPE

This course has been intended to provide the student insights into helpful areas of statistics and research methodology.

OBJECTIVE

Students get an idea about collection, interpretation and presentation of statistical data and identify the research problem.

UNIT I

Definitions-Scope of Biostatistics- Variables in biology, collection, classification and tabulation of data- Graphical and diagrammatic representation.
Measures of central tendency – Arithmetic mean, median and mode. Measures of dispersion- Range, standard deviation, Coefficient of variation.

UNIT II

Correlation: Meaning and definition - Scatter diagram –Karl Pearson’s correlation coefficient. Rank correlation.
Regression: Regression in two variables – Regression coefficient problems – uses of regression.

UNIT III

Test of significance: Tests based on Means only-Both Large sample and Small sample tests – Student’s t test, F-test, Chi square test - goodness of fit. Analysis of variance – one way and two way classification. CRD, RBD Designs.

UNIT IV

UNIT V

REFERENCES

SCOPE
The paper deals with basic concept of drug discovery, clinical trial and IPR.

OBJECTIVES
Students understand concept of drug discovery, clinical research and IPR.

UNIT I
Drug discovery and Development: Introduction to Pharmaceutical Industry, New drug discovery-Target Identification- Target Prioritization/ validation, Lead identification, Lead optimization ; Preclinical studies - Preclinical technology, Chemistry manufacturing and controls / Pharmaceutics Pharmacology/Toxicology

UNIT II
Basics of Clinical Research: Definition of clinical research and development, History of randomized trial Literature - Finding and Evaluation databases of Scientific Literature; Critiquing of Research Projects, Time management and resource implications

UNIT III
Epidemiology: Experimental Procedures - Controlled Experiments, Sampling Techniques, Questioner Design, Validity and reliability of observations, Primary variables, Acquisition and using secondary data, Randomization and Blinding: Theory and practice

UNIT IV
IPR: Introduction to Copyright - Conceptual Basis, International Protection of Copyright and Related rights- An Overview (International Convention/Treaties on Copyright). Indian Copyright Law -The Copyright Act, 1957 with its amendments, Ownership, transfer and duration of Copyright, Renewal and Termination of Copyright.

UNIT V

TEXT BOOK
REFERENCES

SCOPE
The paper provides basic knowledge diet for acute and chronic disease.

OBJECTIVES
To understand the role of diet in the management of disease

UNIT-1
Nutrition-Foods for normal nutrition. Diets in gastrointestinal diseases-Acute gastrointestinal conditions, chronic and non-acute disorders of the upper gastrointestinal tract, lower gastrointestinal conditions, pancreatitis, liver diseases, gall stones, appendicitis, cholelithiasis. Diet for hepatitis

UNIT II
Diet for diabetes mellitus-Nutrition recommendations for patient with diabetes, Meal planning, Exchange list of different food groups, Diabetic diets based on exchange list, Diabetic diets menu wise.
Diets in Renal disease-Acute renal failure, Proteinuria, Indoor diet charts for renal patients.

UNIT III
Diet for Cardiovascular Diseases-Risk Factors, Hypertension, Atherosclerosis, Stroke and other peripheral diseases, Cardiomyopathy and cardiac failure, Rheumatic heart disease, dietary management, general guidelines for coronary heart disease, Dietary recommendations of WHO.
Diet for Acute cardiac diseases
Obesity-Body fat distribution, Health risks of obesity, Weight reduction, Factors contributing to obesity.

UNIT IV
Cancer and diet therapy-Influence of diet on carcinogenesis, Dietary risk factors and cancers at various sites in the human body, diet therapy, eating well during cancer treatment, managing eating problems during treatment
Diet for inborn errors of metabolism-phenylketonuria, Galactosaemia, Celiac disease.

UNIT V
Nutrition related bone disease-osteoporosis.
Dietary factors in dental disease-Starch & dental cavities, protective factor in food
Blood-Nutrition deficiency affecting hematopoiesis.
REFERENCES

ENZYMEOLOGY

1. Determination of the activity of the following serum enzymes:
 a. LDH
 b. Acid phosphatase
 c. Alkaline phosphatase
 d. Aspartate amino transferase
 e. Alanine amino transferase
 f. 5’ nucleotidase
 g. Sodium potassium ATPase
 h. Ceruloplasmin

IMMUNOLOGY (DEMONSTRATION)

2. Raising of antibodies- single soluble and particulate antigen
3. Immunodiffusion- single radial and double diffusion.
4. Immunelectrophoresis.
5. Rocket immunoelectrophoresis
6. ELISA

Case study-Report

7. Serum enzyme in liver disease
8. Serum enzyme in cardiac disease
9. Serum enzyme in cancer disease
10. Glucose Tolerance Test

REFERENCES

Clinical analysis

1. Estimation of glucose in serum
2. Estimation of cholesterol in serum
3. Estimation of urea in the urine and serum
4. Estimation of chloride in the urine and serum
5. Estimation of calcium in the urine and serum
6. Estimation of magnesium in the urine and serum
7. Analysis of urinary calculi
8. Estimation of Bilirubin in serum (Kit method)
9. Estimation of triglyceride in serum (Kit method)
10. Estimation of HDL in serum (Kit method)

ANIMAL STUDIES (Group experiment)

11. Handling of animals
12. Methods of injection
13. Induction of liver toxicity

REFERENCES

